A new splitting algorithm for dynamical low-rank approximation motivated by the fibre bundle structure of matrix manifolds

被引:0
作者
Marie Billaud-Friess
Antonio Falcó
Anthony Nouy
机构
[1] Centrale Nantes,LMJL UMR CNRS 6629
[2] Universidad Cardenal Herrera-CEU,ESI International Chair@CEU
[3] CEU Universities,UCH Departamento de Matemáticas Física y Ciencias Tecnológicas
来源
BIT Numerical Mathematics | 2022年 / 62卷
关键词
Dynamical low-rank approximation; Matrix manifold; Matrix differential equation; Splitting integrator; 15A23; 65F30; 65L05; 65L20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a new splitting algorithm for dynamical low-rank approximation motivated by the fibre bundle structure of the set of fixed rank matrices. We first introduce a geometric description of the set of fixed rank matrices which relies on a natural parametrization of matrices. More precisely, it is endowed with the structure of analytic principal bundle, with an explicit description of local charts. For matrix differential equations, we introduce a first order numerical integrator working in local coordinates. The resulting algorithm can be interpreted as a particular splitting of the projection operator onto the tangent space of the low-rank matrix manifold. It is proven to be exact in some particular case. Numerical experiments confirm this result and illustrate the robustness of the proposed algorithm.
引用
收藏
页码:387 / 408
页数:21
相关论文
共 30 条
[1]  
Billaud-Friess M(2017)Dynamical model reduction method for solving parameter-dependent dynamical systems SIAM J. Sci. Comput. 39 A1766-A1792
[2]  
Nouy A(2013)A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations I: Derivation and algorithms J. Comput. Phys. 242 843-868
[3]  
Cheng M(2018)Model order reduction for dynamical systems: a geometric approach Comptes Rendus Mécanique 346 515-523
[4]  
Hou TY(2018)A geometric approach to dynamical model-order reduction SIAM J. Matrix Anal. Appl. 39 510-538
[5]  
Zhang Z(2018)Dynamically orthogonal numerical schemes for efficient stochastic advection and Lagrangian transport SIAM Rev. 60 595-625
[6]  
Sorensen D-C(2019)The extrinsic geometry of dynamical systems tracking nonlinear matrix projections SIAM J. Matrix Anal. Appl. 40 814-844
[7]  
Falcó A(2016)Discretized dynamical low-rank approximation in the presence of small singular values SIAM J. Numer. Anal. 54 1020-1038
[8]  
Sánchez F(2019)Projection methods for dynamical low-rank approximation of high-dimensional problems Comput. Methods Appl. Math. 19 73-92
[9]  
Feppon F(2007)Dynamical low-rank approximation SIAM J. Matrix Anal. Appl. 29 434-454
[10]  
Lermusiaux PFJ(2014)A projection-splitting integrator for dynamical low-rank approximation BIT Numer. Math. 54 171-188