Weak type inequality for noncommutative differentially subordinated martingales

被引:0
作者
Adam Osȩkowski
机构
[1] Warsaw University,Department of Mathematics
来源
Probability Theory and Related Fields | 2008年 / 140卷
关键词
Noncommutative probability space; Martingale; Weak type (1,1) inequality; Differentially subordinated martingales; Primary: 46L53; Secondary: 60G42;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper we focus on self-adjoint noncommutative martingales. We provide an extension of the notion of differential subordination, which is due to Burkholder in the commutative case. Then we show that there is a noncommutative analogue of the Burkholder method of proving martingale inequalities, which allows us to establish the weak type (1,1) inequality for differentially subordinated martingales. Moreover, a related sharp maximal weak type (1,1) inequality is proved.
引用
收藏
页码:553 / 568
页数:15
相关论文
共 16 条
[1]  
Burkholder D.L.(1966)Martingale transforms Ann. Math. Statist. 37 1494-1504
[2]  
Fack T.(1986)Generalized Pacific J. Math. 123 269-300
[3]  
Kosaki H.(2002)-numbers of J. Reine Angew. Math 549 149-190
[4]  
Junge M.(2007)-measurable operators Trans. Am. Math. Soc. 359 115-142
[5]  
Junge M.(2003)Doob’s inequality for noncommutative martingales Ann. Probab. 31 948-995
[6]  
Musat M.(2003)A noncommutative version of the John–Nirenberg Theorem J. Funct. Anal. 202 195-225
[7]  
Junge M.(2006)Noncommutative Burkholder/Rosenthal inequalities Proc. Lond. Math. Soc. (3) 93 227-252
[8]  
Xu Q.(1997)Interpolation between noncommutative BMO and noncommutative Commun. Math. Phys. 189 667-698
[9]  
Musat M.(2002) spaces J. Funct. Anal. 194 181-212
[10]  
Parcet J.(2004)Gundy’s decomposition for noncommutative martingales and applications Israel J. Math. 140 333-365