Criteria for the single-valued metric generalized inverses of multi-valued linear operators in banach spaces

被引:0
作者
Yu Wen Wang
Jian Zhang
Yun An Cui
机构
[1] Harbin Normal University,Y. Y. Tseng Functional Analysis Research Center and School of Mathematical Sciences
[2] Harbin University of Science and Technology,Department of Applied Mathematics
来源
Acta Mathematica Sinica, English Series | 2012年 / 28卷
关键词
Banach space; multi-valued linear operator; metric generalized inverse; criteria; 47A06;
D O I
暂无
中图分类号
学科分类号
摘要
Let X, Y be Banach spaces and M be a linear subspace in X × Y = {{x, y}|x ∈ X, y ∈ Y}. We may view M as a multi-valued linear operator from X to Y by taking M(x) = {y|{x, y} ∈ M}. In this paper, we give several criteria for a single-valued operator from Y to X to be the metric generalized inverse of the multi-valued linear operator M. The principal tool in this paper is also the generalized orthogonal decomposition theorem in Banach spaces.
引用
收藏
页码:637 / 644
页数:7
相关论文
共 15 条
[1]  
Wang Y. W.(2005)Metric generalized inverse for linear manifolds and extremal solutionsof linear inclusion in Banach spaces J. Math. Anal. Appl. 302 360-371
[2]  
Liu J.(1982)Generalized inverse for linear manifold and applications to boundary value problems in Banach spaces C. R. Math. Rep. Acad. Sci. Canada 4 347-352
[3]  
Lee S. J.(1983)Least-squares solutions of multi-valued linear inclusions and applications in Hilbert spaces J. Approx. Theory 38 380-391
[4]  
Nashed M. Z.(1989)Contrained least-quares solutions of linear inclusions and singular control problems in Hilbert spaces Appl. Math. Optim. 19 225-242
[5]  
Lee S. J.(1990)Algebraic and topological selections of multi-valued linear relations Annali della Scuola Normale Superiore di Pisa — Classe di Scienze, Sér. 4 17 111-126
[6]  
Nashed M. Z.(2003)Metric generalized inverse of linear operator in Banach space Chin. Ann. Math., Ser. B 24 509-520
[7]  
Lee S. J.(2008)Ceiteria for the metric generalized inverse and its selections in Banach spaces Set-Valued Analysis 16 51-65
[8]  
Nashed M. Z.(undefined)undefined undefined undefined undefined-undefined
[9]  
Lee S. J.(undefined)undefined undefined undefined undefined-undefined
[10]  
Nashed M. Z.(undefined)undefined undefined undefined undefined-undefined