On Gradient Shrinking Ricci Solitons with Radial Conditions

被引:0
作者
Fei Yang
Liangdi Zhang
Haiyan Ma
机构
[1] China University of Geosciences,School of Mathematics and Physics
[2] Zhejiang University,Center of Mathematical Sciences
[3] China University of Geosciences,undefined
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2021年 / 44卷
关键词
Rigidity; Classification; Gradient shrinking Ricci soliton; Radial conditions; 53C24; 53C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove an n-dimensional radially flat gradient shrinking Ricci solitons with div2W(∇f,∇f)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$div^2W(\nabla f,\nabla f)=0$$\end{document} is rigid. Moreover, we show that a four-dimensional radially flat gradient shrinking Ricci soliton with div2W±(∇f,∇f)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {div}^2W^\pm (\nabla f,\nabla f)=0$$\end{document} is either Einstein or a finite quotient of R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^4$$\end{document}, S2×R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}}^2\times {\mathbb {R}}^2$$\end{document} or S3×R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}}^3\times {\mathbb {R}}$$\end{document}.
引用
收藏
页码:2161 / 2174
页数:13
相关论文
共 30 条
[1]  
Cao HD(2013)On Bach-flat gradient shrinking Ricci solitons Duke Math. J. 162 1149-1169
[2]  
Chen Q(2010)On complete gradient shrinking Ricci solitons J. Differ. Geom. 85 175-186
[3]  
Cao HD(2017)Gradient Ricci solitons with vanishing conditions on Weyl J. Math. Pure Appl. 108 1-13
[4]  
Zhou D(2009)Strong uniqueness of the Ricci flow J. Differ. Geom. 86 362-382
[5]  
Catino G(2015)On four-dimensional anti-self-dual gradient Ricci solitons J. Geom. Anal. 25 1335-1343
[6]  
Mastrolia P(2008)Ricci solitons: the equation point of view Manuscr. Math. 127 345-367
[7]  
Monticelli DD(2011)Rigidity of shrinking Ricci solitons Math. Z. 269 461-466
[8]  
Chen BL(2016)On gradient Ricci solitons with constant scalar curvature Proc. Am. Math. Soc. 144 369-378
[9]  
Chen X(2013)On gradient Ricci solitons J. Geom. Anal. 23 539-561
[10]  
Wang Y(2007)Noncompact shrinking 4-solitons with nonnegative curvature J. Reine Angew. Math. 645 125-153