MEDALT: single-cell copy number lineage tracing enabling gene discovery

被引:0
作者
Fang Wang
Qihan Wang
Vakul Mohanty
Shaoheng Liang
Jinzhuang Dou
Jincheng Han
Darlan Conterno Minussi
Ruli Gao
Li Ding
Nicholas Navin
Ken Chen
机构
[1] The University of Texas MD Anderson Cancer Center,Department of Bioinformatics and Computational Biology
[2] Sun Yat-sen University,Present Address: Precision Medicine Institute, The First Affiliated Hospital
[3] Rice University,Department of Computer Science
[4] The University of Texas MD Anderson Cancer Center,Department of Cancer Biology
[5] The University of Texas MD Anderson Cancer Center,Department of Genetics
[6] Houston Methodist Research Institute,Department of Cardiovascular Sciences, Center for Bioinformatics and Computational Biology
[7] McDonnell Genome Institute Washington University School of Medicine,Department of Medicine
来源
Genome Biology | / 22卷
关键词
Single-cell; scDNA-seq; scRNA-seq; Copy number alteration; Tumor evolution; Lineage tracing; Driver discovery;
D O I
暂无
中图分类号
学科分类号
摘要
We present a Minimal Event Distance Aneuploidy Lineage Tree (MEDALT) algorithm that infers the evolution history of a cell population based on single-cell copy number (SCCN) profiles, and a statistical routine named lineage speciation analysis (LSA), whichty facilitates discovery of fitness-associated alterations and genes from SCCN lineage trees. MEDALT appears more accurate than phylogenetics approaches in reconstructing copy number lineage. From data from 20 triple-negative breast cancer patients, our approaches effectively prioritize genes that are essential for breast cancer cell fitness and predict patient survival, including those implicating convergent evolution.
引用
收藏
相关论文
共 50 条
[41]   Origins of pathological myofibroblasts in lung fibrosis: insights from lineage tracing mouse models in the single-cell RNA sequencing era [J].
Homps-Legend, Meline ;
Crestani, Bruno ;
Mailleux, Arnaud A. .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2023, 324 (06) :L737-L746
[42]   Single-cell lineage analysis reveals genetic and epigenetic interplay in glioblastoma drug resistance [J].
Eyler, Christine E. ;
Matsunaga, Hironori ;
Hovestadt, Volker ;
Vantine, Samantha J. ;
van Galen, Peter ;
Bernstein, Bradley E. .
GENOME BIOLOGY, 2020, 21 (01)
[43]   Dynamics of single-cell gene expression [J].
Longo, Diane ;
Hasty, Jeff .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1)
[44]   The Power of Single-Cell RNA Sequencing in eQTL Discovery [J].
Maria, Maleeha ;
Pouyanfar, Negar ;
Ord, Tiit ;
Kaikkonen, Minna U. .
GENES, 2022, 13 (03)
[45]   Labeling single cell for in-vivo study of cell fate mapping and lineage tracing [J].
He, Sicong ;
Xu, Jin ;
Wu, Yi ;
Tian, Ye ;
Sun, Qiqi ;
Wen, Zilong ;
Qu, Jianan Y. .
IMAGING, MANIPULATION, AND ANALYSIS OF BIOMOLECULES, CELLS, AND TISSUES XVI, 2018, 10497
[46]   Sensitivity to copy number variation analysis in single cell genomics [J].
Tu, Jing ;
Zhou, Yue ;
Tao, Yuhan ;
Lu, Na ;
Yang, Yixuan ;
Lu, Zuhong .
GENE, 2022, 808
[47]   Exploiting Single-Cell Tools in Gene and Cell Therapy [J].
Bode, Daniel ;
Cull, Alyssa H. ;
Rubio-Lara, Juan A. ;
Kent, David G. .
FRONTIERS IN IMMUNOLOGY, 2021, 12
[48]   Single-cell analysis of progenitor cell dynamics and lineage specification in the human fetal kidney [J].
Menon, Rajasree ;
Otto, Edgar A. ;
Kokoruda, Austin ;
Zhou, Wan ;
Zhang, Zidong ;
Yoon, Euisik ;
Chen, Yu-Chih ;
Troyanskaya, Olga ;
Spence, Jason R. ;
Kretzler, Matthias ;
Cebrian, Cristina .
DEVELOPMENT, 2018, 145 (16)
[49]   Evaluation of tools for highly variable gene discovery from single-cell RNA-seq data [J].
Yip, Shun H. ;
Sham, Pak Chung ;
Wang, Junwen .
BRIEFINGS IN BIOINFORMATICS, 2019, 20 (04) :1583-1589
[50]   Evaluating the Reproducibility of Single-Cell Gene Regulatory Network Inference Algorithms [J].
Kang, Yoonjee ;
Thieffry, Denis ;
Cantini, Laura .
FRONTIERS IN GENETICS, 2021, 12