Pseudo-Anosov mapping classes and their representations by products of two Dehn twists

被引:0
作者
Chaohui Zhang
机构
[1] Morehouse College,Department of Mathematics
来源
Chinese Annals of Mathematics, Series B | 2009年 / 30卷
关键词
Riemann surface; Pseudo-Anosov map; Dehn twist; Teichmüller space; Bers fiber space; 32G15; 30C60; 30F60;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tilde S $$\end{document} be a Riemann surface of analytically finite type (p, n) with 3p − 3 + n > 0. Let a ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tilde S $$\end{document} and S = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tilde S $$\end{document} − {a}. In this article, the author studies those pseudo-Anosov maps on S that are isotopic to the identity on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tilde S $$\end{document} and can be represented by products of Dehn twists. It is also proved that for any pseudo-Anosov map f of S isotopic to the identity on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tilde S $$\end{document}, there are infinitely many pseudo-Anosov maps F on S − {b} = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tilde S $$\end{document} − {a, b}, where b is a point on S, such that F is isotopic to f on S as b is filled in.
引用
收藏
页码:281 / 292
页数:11
相关论文
共 18 条
  • [1] Ahlfors L. V.(1960)Riemann’s mapping theorem for variable metrics Ann. Math. 72 385-404
  • [2] Bers L.(1973)Fiber spaces over Teichmüller spaces Acta. Math. 130 89-126
  • [3] Bers L.(1978)An extremal problem for quasiconformal mappings and a theorem by Thurston Acta. Math. 141 73-98
  • [4] Bers L.(2006)Veech group without parabolic elements Duke Math. J. 133 335-346
  • [5] Hubert P.(1981)On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces Acta. Math. 146 231-270
  • [6] Lanneau E.(2003)On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces with two specified points Osaka J. Math. 40 669-685
  • [7] Kra I.(1999)Geometry of the complex of curves I: Hyperbolicity Invent. Math. 138 103-149
  • [8] Imayoshi Y.(1982)Non-geodesic discs embedded in Teichmüller spaces Amer. J. Math. 104 339-408
  • [9] Ito M.(1988)A construction of pseudo-Anosov homeomorphisms Proc. Amer. Math. Soc. 104 1-19
  • [10] Yamamoto H.(1988)On the geometry and dynamics of diffeomorphisms of surfaces Bull. Amer. Math. Soc. 19 417-431