Traffic sign detection based on improved faster R-CNN for autonomous driving

被引:0
|
作者
Xiaomei Li
Zhijiang Xie
Xiong Deng
Yanxue Wu
Yangjun Pi
机构
[1] Chongqing University,State Key Laboratory of Mechanical Transmissions
[2] Chongqing University,College of Mechanical and Vehicle Engineering
来源
The Journal of Supercomputing | 2022年 / 78卷
关键词
Faster R-CNN; ResNet50-D; ACFPN; AutoAugment; Autonomous driving; Traffic sign detection;
D O I
暂无
中图分类号
学科分类号
摘要
The timely and accurate identification of traffic signs plays a significant role in realizing the autonomous driving of vehicles. However, the size of traffic signs accounts for a low proportion of the input picture, which increases the difficulty of detection. This paper proposes an improved faster R-CNN traffic sign detection method. ResNet50-D feature extractor, attention-guided context feature pyramid network (ACFPN), and AutoAugment technology are designed for the faster R-CNN model. ResNet50-D is selected as the backbone network to obtain more characteristic information. ACFPN is performed to decrease the loss of contextual information. And data augmentation and transfer learning are adopted to make model training more convenient and time-saving. To prove the availability of the proposed method, we compare it with mainstream approaches (SSD, YOLOv3, RetinaNet, cascade R-CNN, FCOS, and CornerNet-Squeeze) and state-of-the-art methods. Experimental results on the CCTSDB dataset show that the improved faster R-CNN achieves the frames per second of 29.8 and the mean average precision of 99.5%, which is superior to the state-of-the-art methods and more suitable for traffic sign detection. Moreover, the proposed model is extended to the Tsinghua-Tencent 100 K (TT100K) dataset and also achieves a competitive detection result.
引用
收藏
页码:7982 / 8002
页数:20
相关论文
共 50 条
  • [41] Street Object Detection Based on Faster R-CNN
    Cai, Wendi
    Li, Jiadie
    Xie, Zhongzhao
    Zhao, Tao
    Lu, Kang
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 9500 - 9503
  • [42] Study Of Object Detection Based On Faster R-CNN
    Liu, Bin
    Zhao, Wencang
    Sun, Qiaoqiao
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 6233 - 6236
  • [43] Rapid Cigarette Detection Based on Faster R-CNN
    Han, Guijin
    Li, Qian
    Zhou, You
    Duan, Jiawei
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2759 - 2765
  • [44] Automatic detection of books based on Faster R-CNN
    Zhu, Beibei
    Wu, Xiaoyu
    Yang, Lei
    Shen, Yinghua
    Wu, Linglin
    2016 THIRD INTERNATIONAL CONFERENCE ON DIGITAL INFORMATION PROCESSING, DATA MINING, AND WIRELESS COMMUNICATIONS (DIPDMWC), 2016, : 8 - 12
  • [45] Faster R-CNN Based Microscopic Cell Detection
    Yang, Su
    Fang, Bin
    Tang, Wei
    Wu, Xuegang
    Qian, Jiye
    Yang, Weibin
    2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2017, : 345 - 350
  • [46] An application of Faster R-CNN for the detection and recognition of Ecuadorian traffic signs
    Flores-Calero, Marco
    Albuja, Alberto
    Gualsaqui, Marco
    Jose Ayala, Maria
    Gallegos, Joselyn
    2022 IEEE COLOMBIAN CONFERENCE ON COMMUNICATIONS AND COMPUTING, COLCOM, 2022,
  • [47] Fabric Defect Detection Based on Faster R-CNN
    Liu, Zhoufeng
    Liu, Xianghui
    Li, Chunlei
    Li, Bicao
    Wang, Baorui
    NINTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2017), 2018, 10615
  • [48] Detection Method of Insulator Based on Faster R-CNN
    Ma, Lei
    Xu, Changfu
    Zuo, Guoyu
    Bo, Bin
    Tao, Fengbo
    2017 IEEE 7TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2017, : 1410 - 1414
  • [49] Pedestrian detection method based on Faster R-CNN
    Zhang, Hui
    Du, Yu
    Ning, Shurong
    Zhang, Yonghua
    Yang, Shuo
    Du, Chen
    2017 13TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2017, : 427 - 430
  • [50] Automatic dock identification based on improved Faster R-CNN
    Chang L.
    Wang X.
    Wang C.
    National Remote Sensing Bulletin, 2022, 26 (04) : 752 - 765