Traffic sign detection based on improved faster R-CNN for autonomous driving

被引:0
|
作者
Xiaomei Li
Zhijiang Xie
Xiong Deng
Yanxue Wu
Yangjun Pi
机构
[1] Chongqing University,State Key Laboratory of Mechanical Transmissions
[2] Chongqing University,College of Mechanical and Vehicle Engineering
来源
关键词
Faster R-CNN; ResNet50-D; ACFPN; AutoAugment; Autonomous driving; Traffic sign detection;
D O I
暂无
中图分类号
学科分类号
摘要
The timely and accurate identification of traffic signs plays a significant role in realizing the autonomous driving of vehicles. However, the size of traffic signs accounts for a low proportion of the input picture, which increases the difficulty of detection. This paper proposes an improved faster R-CNN traffic sign detection method. ResNet50-D feature extractor, attention-guided context feature pyramid network (ACFPN), and AutoAugment technology are designed for the faster R-CNN model. ResNet50-D is selected as the backbone network to obtain more characteristic information. ACFPN is performed to decrease the loss of contextual information. And data augmentation and transfer learning are adopted to make model training more convenient and time-saving. To prove the availability of the proposed method, we compare it with mainstream approaches (SSD, YOLOv3, RetinaNet, cascade R-CNN, FCOS, and CornerNet-Squeeze) and state-of-the-art methods. Experimental results on the CCTSDB dataset show that the improved faster R-CNN achieves the frames per second of 29.8 and the mean average precision of 99.5%, which is superior to the state-of-the-art methods and more suitable for traffic sign detection. Moreover, the proposed model is extended to the Tsinghua-Tencent 100 K (TT100K) dataset and also achieves a competitive detection result.
引用
收藏
页码:7982 / 8002
页数:20
相关论文
共 50 条
  • [41] A vehicle detection and tracking method for traffic video based on faster R-CNN
    Mohamed Othmani
    Multimedia Tools and Applications, 2022, 81 : 28347 - 28365
  • [42] Crack Detection and Comparison Study Based on Faster R-CNN and Mask R-CNN
    Xu, Xiangyang
    Zhao, Mian
    Shi, Peixin
    Ren, Ruiqi
    He, Xuhui
    Wei, Xiaojun
    Yang, Hao
    SENSORS, 2022, 22 (03)
  • [43] Lithology Identification Based on Improved Faster R-CNN
    Fu, Peng
    Wang, Jiyang
    MINERALS, 2024, 14 (09)
  • [44] Scene recognition of road traffic accident based on an improved faster R-CNN algorithm
    Wang, Fenghui
    Qiao, Jie
    Li, Lingyi
    Liu, Yongtao
    Wei, Lang
    INTERNATIONAL JOURNAL OF CRASHWORTHINESS, 2022, 27 (05) : 1428 - 1432
  • [45] Faster R-CNN Based Autonomous Navigation for Vehicles in Warehouse
    Sun, Yiyou
    Su, Tonghua
    Tu, Zhiying
    2017 IEEE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2017, : 1639 - 1644
  • [46] R-CNN Based 3D Object Detection for Autonomous Driving
    Hu, Hongyu
    Zhao, Tongtong
    Wang, Qi
    Gao, Fei
    He, Lei
    CICTP 2020: TRANSPORTATION EVOLUTION IMPACTING FUTURE MOBILITY, 2020, : 918 - 929
  • [47] Moving target detection in video SAR based on improved faster R-CNn
    Huang, Xuejun
    Liang, Dongxing
    Ding, Jinshan
    Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR, 2021, 2021-March : 285 - 289
  • [48] A quantitative detection algorithm based on improved faster R-CNN for marine benthos
    Liu, Yong
    Wang, Shengnan
    ECOLOGICAL INFORMATICS, 2021, 61
  • [49] Traffic Signs Detection and Segmentation Based on the Improved Mask R-CNN
    Qian, Huimin
    Ma, Yilong
    Chen, Wei
    Li, Tao
    Zhuo, Yi
    Xiang, Wenbo
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 8241 - 8246
  • [50] Improved Faster R-CNN Based Surface Defect Detection Algorithm for Plates
    Xia, Baizhan
    Luo, Hao
    Shi, Shiguang
    Computational Intelligence and Neuroscience, 2022, 2022