From Vicious Walkers to TASEP

被引:0
作者
T. C. Dorlas
A. M. Povolotsky
V. B. Priezzhev
机构
[1] Dublin Institute for Advanced Studies,Bogoliubov Laboratory for Theoretical Physics
[2] Joint Institute for Nuclear Research,undefined
来源
Journal of Statistical Physics | 2009年 / 135卷
关键词
Asymmetric simple exclusion process; Vicious walkers; Bethe ansatz;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a model of semi-vicious walkers, which interpolates between the totally asymmetric simple exclusion process and the vicious walkers model, having the two as limiting cases. For this model we calculate the asymptotics of the survival probability for m particles and obtain a scaling function, which describes the transition from one limiting case to another. Then, we use a fluctuation-dissipation relation allowing us to reinterpret the result as the particle current generating function in the totally asymmetric simple exclusion process. Thus we obtain the particle current distribution asymptotically in the large time limit as the number of particles is fixed. The results apply to the large deviation scale as well as to the diffusive scale. In the latter we obtain a new universal distribution, which has a skew non-Gaussian form. For m particles its asymptotic behavior is shown to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$e^{-\frac{y^{2}}{2m^{2}}}$\end{document} as y→−∞ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$e^{-\frac{y^{2}}{2m}}y^{-\frac{m(m-1)}{2}}$\end{document} as y→∞.
引用
收藏
页码:483 / 517
页数:34
相关论文
共 54 条
[1]  
Baik J.(2000)Random vicious walks and random matrices Commun. Pure Appl. Math. 53 1385-1410
[2]  
Brankov J.(2004)Generalized determinant solution of the discrete-time totally asymmetric exclusion process and zero-range process Phys. Rev. E 69 066136-83
[3]  
Priezzhev V.B.(2001)Fluctuations in stationary nonequilibrium states of irreversible processes Phys. Rev. Lett. 87 040601-30
[4]  
Shelest R.V.(2007)Fluctuation properties of the TASEP with periodic initial configuration J. Stat. Phys. 129 1055-213
[5]  
Bertini L.(1998)An exactly soluble non-equilibrium system: the asymmetric simple exclusion process Phys. Rep. 301 65-12
[6]  
De Sole A.(1999)Universal large-deviation function of the Kardar-Parisi-Zhang equation in one dimension J. Stat. Phys. 94 1-4715
[7]  
Gabrielli D.(1998)Exact large deviation function in the asymmetric exclusion process Phys. Rev. Lett. 80 209-39
[8]  
Jona-Lasinio G.(1984)Large deviations for a general class of random vectors Ann. Prob. 12 1-728
[9]  
Landim C.(2006)Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process Commun. Math. Phys. 265 1-30
[10]  
Borodin A.(1984)Walks, walls, wetting, and melting J. Stat. Phys. 34 0022-3524