Widths of the Classes of Functions in the Weight Space L2,γ(ℝ), γ = exp(−X2)

被引:0
作者
S. B. Vakarchuk
机构
[1] A. Nobel University,
来源
Ukrainian Mathematical Journal | 2022年 / 74卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In the space L2,γ(ℝ), we study the approximating optimization characteristics for the function classes W2rΩm,γ,φΨℝ≔f∈L2,γrDℝ∫0tΩm,γDrfuφudu≤Ψt∀t∈01,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {W}_{2}^{r}\left({\Omega}_{m,\upgamma,}\varphi, \Psi; \mathbb{R}\right):= \left\{f\in {L}_{2,\upgamma}^{r}\left(D,\mathbb{R}\right);\kern1em {\int}_{0}^{t}{\Omega}_{m,\upgamma}\left({D}^{r}f,u\right)\varphi (u) du\le \Psi (t)\forall t\in \left(0,1\right)\right\}, $$\end{document} where r ∈ ℤ+, m ∈ ℕ, Ωm,γ is the generalized modulus of continuity of order m, 𝜑 is a weight function, is a majorant, D≔−d2dx2+2xddx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ D\kern0.5em := -\frac{d^2}{dx^2}+2x\frac{d}{dx} $$\end{document} is a differential operator, Drf = D(Dr−1f) (r ∈ ℕ), D0f ≡ f, and L02,γ(D, ℝ) ≡ L2,γ(ℝ). For various widths of the indicated classes in L2,γ(ℝ), we establish their lower and upper estimates and present the conditions for the majorant under which the exact values of these widths can be determined. Some specific exact results are also presented.
引用
收藏
页码:698 / 708
页数:10
相关论文
共 10 条
[1]  
Freud G(1970)On the of approximation with weight by algebraic polynomials on the real axis Dokl. Akad. Nauk SSSR 191 293-294
[2]  
Mhaskar HN(1986)Weighted polynomial approximation J. Approx. Theory 46 100-110
[3]  
Abilov VA(2006)Some problems of the approximation of functions by Fourier–Hermite sums in the space Rus. Math. 50 1-10
[4]  
Abilova FA(2014)(ℝ Math. Notes 95 599-614
[5]  
Vakarchuk SB(1984)) Sov. Math. 28 70-79
[6]  
Fedorov VM(1976)Mean approximation of functions on the real axis by algebraic polynomials with Chebyshev–Hermite weight and widths of function classes Math. Notes 20 797-800
[7]  
Taikov LV(1977)Approximation by algebraic polynomials with Chebyshev–Hermitian weight Math. Notes 22 789-794
[8]  
Taikov LV(1978)Inequalities containing best approximations and the modulus of continuity of functions in Math. Notes 24 917-921
[9]  
Ligun AA(2006)Best approximations of differentiable functions in the metric of the space Math. Notes 80 11-18
[10]  
Vakarchuk SB(undefined)Some inequalities between best approximations and moduli of continuity in an undefined undefined undefined-undefined