Consistency of the likelihood depth estimator for the correlation coefficient

被引:0
作者
Liesa Denecke
Christine H. Müller
机构
[1] Technische Universität Dortmund,Fakultät Statistik
来源
Statistical Papers | 2014年 / 55卷
关键词
Consistency; Data depth; Gaussian copula; Likelihood depth; Parametric estimation; Correlation coefficient; 62G35; 62H20; 62G07;
D O I
暂无
中图分类号
学科分类号
摘要
Denecke and Müller (CSDA 55:2724–2738, 2011) presented an estimator for the correlation coefficient based on likelihood depth for Gaussian copula and Denecke and Müller (J Stat Planning Inference 142: 2501–2517, 2012) proved a theorem about the consistency of general estimators based on data depth using uniform convergence of the depth measure. In this article, the uniform convergence of the depth measure for correlation is shown so that consistency of the correlation estimator based on depth can be concluded. The uniform convergence is shown with the help of the extension of the Glivenko-Cantelli Lemma by Vapnik- C̃ ervonenkis classes.
引用
收藏
页码:3 / 13
页数:10
相关论文
共 22 条
  • [1] Denecke L(2011)Robust estimators and tests for copulas based on likelihood depth CSDA 55 2724-2738
  • [2] Müller ChH(2012)Consistency and robustness of tests and estimators based on depth J Stat Planning Inference 142 2501-2517
  • [3] Denecke L(2009)Generalized Mahalanobis depth in the reproducing kernel Hilbert space Stat Pap 52 511-522
  • [4] Müller ChH(2008)Multivariate spacings based on data depth: I. Construction of nonparametric multivariate tolerance regions Ann Stat 36 1299-1323
  • [5] Hu Y(2006)Robust estimating equation based on statistical depth Stat Pap 47 263-278
  • [6] Wang Y(1990)On a notion of data depth based on random simplices Ann Statist 18 405-414
  • [7] Wu Y(2009)On the concept of depth for functional data J Am Stat Assoc 104 718-734
  • [8] Li Q(2002)On depth and deep points: a calculus Ann Stat 30 1681-1736
  • [9] Hou C(2004)Location-scale depth J Am Stat Assoc 99 949-989
  • [10] Li J(2009)Data depth, random simplices and multivariate dispersion Statist Probab Lett 79 1473-1479