Multi-level semantic annotation and unified data integration using semantic web ontology in big data processing

被引:0
作者
P. Shobha Rani
R. M. Suresh
R. Sethukarasi
机构
[1] R.M.D. Engineering College,
[2] Sri Lakshmi Ammaal Engineering College,undefined
[3] R.M.K. Engineering College,undefined
来源
Cluster Computing | 2019年 / 22卷
关键词
Big data; Annotation; Yago; Structured; Unstructured; Query;
D O I
暂无
中图分类号
学科分类号
摘要
The potential applications of big data need semantic annotation and unified integration of heterogeneous data. This paper proposes MOUNT a multi-level annotation and integration framework that significantly process the heterogeneous dataset by exploiting the semantic knowledge to improve the query processing in the large scale infrastructure. The multi-level annotation proposes the coarse-grained and fine-grained annotation models. The coarse-grained annotation employs Yago and SEeds SEarch to categorize the domain information on the big data and fine-grained annotation enables semantic enrichment. Moreover, the MOUNT approach integrates the structured and unstructured data to form the global resource description framework ontology. Moreover, it facilitates the query processing by translating the natural language user query into structured triples. The experimental results prove that the MOUNT approach yields a better performance in terms of result accuracy by 94%.
引用
收藏
页码:10401 / 10413
页数:12
相关论文
共 44 条
[1]  
Chen M(2014)Big data: a survey Mob. Netw. Appl. 19 171-209
[2]  
Mao S(2015)Understandable big data: a survey Comput. Sci. Rev. 17 70-81
[3]  
Liu Y(2014)Big data opportunities and challenges: discussions from data analytics perspectives IEEE Trans. Comput. Intell. Mag. 9 62-74
[4]  
Emani CK(2015)Semantic annotation for knowledge explicitation in a product lifecycle management context: a survey Comput. Ind. 71 24-34
[5]  
Cullot N(2014)Data-intensive applications, challenges, techniques and technologies: a survey on big data Inf. Sci. 275 314-347
[6]  
Nicolle C(2011)A proposed model for data warehouse ETL processes J. King Saud Univ. Comput. Inf. Sci. 23 91-104
[7]  
Zhou ZH(2013)Fuzzy web data tables integration guided by an ontological and terminological resource IEEE Trans. Knowl. Data Eng. 25 805-819
[8]  
Chawla NV(2015)Sina: semantic interpretation of user queries for question answering on interlinked data Sci. Serv. Agents World Wide Web 30 39-51
[9]  
Jin Y(2010)Towards efficient SPARQL query processing on RDF data Tsinghua Sci. Technol. 15 613-622
[10]  
Williams GJ(2011)Watson, more than a semantic web search engine Semant. Web 2 55-63