Sparse least mean p-power algorithms for channel estimation in the presence of impulsive noise

被引:0
作者
Wentao Ma
Badong Chen
Hua Qu
Jihong Zhao
机构
[1] Xi’an Jiaotong University,School of Electronic and Information Engineering
来源
Signal, Image and Video Processing | 2016年 / 10卷
关键词
Least mean p-power; Zero-attracting; Reweighted zero-attracting; Correntropy induced metric; Sparse channel estimation; Impulsive noise;
D O I
暂无
中图分类号
学科分类号
摘要
The least mean p-power (LMP) is one of the most popular adaptive filtering algorithms. With a proper p value, the LMP can outperform the traditional least mean square (p=2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p=2)$$\end{document}, especially under the impulsive noise environments. In sparse channel estimation, the unknown channel may have a sparse impulsive (or frequency) response. In this paper, our goal is to develop new LMP algorithms that can adapt to the underlying sparsity and achieve better performance in impulsive noise environments. Particularly, the correntropy induced metric (CIM) as an excellent approximator of the l0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_0$$\end{document}-norm can be used as a sparsity penalty term. The proposed sparsity-aware LMP algorithms include the l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document}-norm, reweighted l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document}-norm and CIM penalized LMP algorithms, which are denoted as ZALMP, RZALMP and CIMLMP respectively. The mean and mean square convergence of these algorithms are analysed. Simulation results show that the proposed new algorithms perform well in sparse channel estimation under impulsive noise environments. In particular, the CIMLMP with suitable kernel width will outperform other algorithms significantly due to the superiority of the CIM approximator for the l0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_0$$\end{document}-norm.
引用
收藏
页码:503 / 510
页数:7
相关论文
共 52 条
[21]  
Hinich M(1993)-norm penalty based on white input signal Proc. IEEE 81 986-1010
[22]  
Wilson GR(undefined)Reweighted undefined undefined undefined-undefined
[23]  
Weng B(undefined)-norm penalized LMS for sparse channel estimation and its analysis undefined undefined undefined-undefined
[24]  
Barner KE(undefined)Signal processing with fractional lower order moments: stable processes and their applications undefined undefined undefined-undefined
[25]  
Sayin MO(undefined)undefined undefined undefined undefined-undefined
[26]  
Vanli ND(undefined)undefined undefined undefined undefined-undefined
[27]  
Kozat SS(undefined)undefined undefined undefined undefined-undefined
[28]  
Gunay O(undefined)undefined undefined undefined undefined-undefined
[29]  
Toreyin BU(undefined)undefined undefined undefined undefined-undefined
[30]  
Kose K(undefined)undefined undefined undefined undefined-undefined