Sparse least mean p-power algorithms for channel estimation in the presence of impulsive noise

被引:0
作者
Wentao Ma
Badong Chen
Hua Qu
Jihong Zhao
机构
[1] Xi’an Jiaotong University,School of Electronic and Information Engineering
来源
Signal, Image and Video Processing | 2016年 / 10卷
关键词
Least mean p-power; Zero-attracting; Reweighted zero-attracting; Correntropy induced metric; Sparse channel estimation; Impulsive noise;
D O I
暂无
中图分类号
学科分类号
摘要
The least mean p-power (LMP) is one of the most popular adaptive filtering algorithms. With a proper p value, the LMP can outperform the traditional least mean square (p=2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p=2)$$\end{document}, especially under the impulsive noise environments. In sparse channel estimation, the unknown channel may have a sparse impulsive (or frequency) response. In this paper, our goal is to develop new LMP algorithms that can adapt to the underlying sparsity and achieve better performance in impulsive noise environments. Particularly, the correntropy induced metric (CIM) as an excellent approximator of the l0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_0$$\end{document}-norm can be used as a sparsity penalty term. The proposed sparsity-aware LMP algorithms include the l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document}-norm, reweighted l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document}-norm and CIM penalized LMP algorithms, which are denoted as ZALMP, RZALMP and CIMLMP respectively. The mean and mean square convergence of these algorithms are analysed. Simulation results show that the proposed new algorithms perform well in sparse channel estimation under impulsive noise environments. In particular, the CIMLMP with suitable kernel width will outperform other algorithms significantly due to the superiority of the CIM approximator for the l0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_0$$\end{document}-norm.
引用
收藏
页码:503 / 510
页数:7
相关论文
共 52 条
[1]  
Rontogiannis AA(2003)Efficient decision feedback equalization for sparse wireless channels IEEE Trans. Wirel. Commun. 2 570-581
[2]  
Berberidis K(2009)Signal processing for underwater acoustic communications IEEE Commun. Mag. 47 90-96
[3]  
Singer AC(2002)Sparse channel estimation via matching pursuit with application to equalization IEEE Trans. Commun. 50 374-378
[4]  
Nelson JK(2006)Detection of fading overlapping multipath components Signal Process. 86 2407-2425
[5]  
Kozat SS(2000)Proportionate normalized least-mean-squares adaptation in echo cancellers IEEE Trans. Speech Audio Process. 8 508-518
[6]  
Cotter S(2009)Adaptive combination of proportionate filters for sparse echo cancellation IEEE Trans. Audio Speech Lang. Process. 17 1087-1098
[7]  
Rao B(2010)SPARLS: The sparse RLS algorithm IEEE Trans. Signal Process. 58 4013-4025
[8]  
Yousef NR(2012)Performance analysis of norm constraint least mean square algorithm IEEE Trans. Signal Process. 60 2223-2235
[9]  
Sayed AH(1987)Nonlinear and non-Gaussian ocean noise J. Acoust. Soc. Am. 82 1386-1394
[10]  
Khajehnouri N(2005)Nonlinear system identification in impulsive environments IEEE Trans. Signal Process. 53 2588-2594