Some characterizations of the integrable Teichmüller space

被引:2
作者
ShuAn Tang
机构
[1] Peking University,Department of Mathematics
来源
Science China Mathematics | 2013年 / 56卷
关键词
integrable Teichmüller space; Bers projection; Douady-Earle extension; -integrable asymptotic affine homeomorphism; 30C62; 30F35; 30F60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove that the Bers projection of the integrable Teichmüller space is holomorphic. By using the Douady-Earle extension, we obtain some characterizations of the integrable Teichmüller space as well as the p-integrable asymptotic affine homeomorphism.
引用
收藏
页码:541 / 551
页数:10
相关论文
共 11 条
[1]  
Astala K.(1991)Teichmüller spaces and BMOA Math Ann 289 613-625
[2]  
Zinsmeister M.(2000)Integrably asymptotic affine homeomorphisms of the circle and Teichmüller spaces Sci China Ser A 43 267-279
[3]  
Cui G.(2004)BMO-Teichmüller spaces Illinois J Math 48 1223-1233
[4]  
Cui G.(1986)Conformally natural extension of homeomorphisms of the circle Acta Math 157 23-48
[5]  
Zinsmeister M.(2000)Integrable Teichmüller spaces Sci China Ser A 43 47-58
[6]  
Douady A.(2003)-th derivative characterizations, mean growth of derivatives and Bull Aust Math Soc 68 405-421
[7]  
Earle C.(1986)( Siberian Math J 27 691-697
[8]  
Guo H.(2011)) J Math Anal Appl 379 48-57
[9]  
Rättyä J.(undefined)Model of the universal Teichmüller space undefined undefined undefined-undefined
[10]  
Zhuravlev I.(undefined)Schwarzian derivative and general Besov-type domains undefined undefined undefined-undefined