Dynamic Averaging Load Balancing on Cycles

被引:0
作者
Dan Alistarh
Giorgi Nadiradze
Amirmojtaba Sabour
机构
[1] IST Austria,
来源
Algorithmica | 2022年 / 84卷
关键词
Algorithms; Load balancing;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the following dynamic load-balancing process: given an underlying graph G with n nodes, in each step t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\ge 0$$\end{document}, a random edge is chosen, one unit of load is created, and placed at one of the endpoints. In the same step, assuming that loads are arbitrarily divisible, the two nodes balance their loads by averaging them. We are interested in the expected gap between the minimum and maximum loads at nodes as the process progresses, and its dependence on n and on the graph structure. Peres et al. (Random Struct Algorithms 47(4):760–775, 2015) studied the variant of this process, where the unit of load is placed in the least loaded endpoint of the chosen edge, and the averaging is not performed. In the case of dynamic load balancing on the cycle of length n the only known upper bound on the expected gap is of order O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}( n \log n )$$\end{document}, following from the majorization argument due to the same work. In this paper, we leverage the power of averaging and provide an improved upper bound of O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O} ( \sqrt{n} \log n )$$\end{document}. We introduce a new potential analysis technique, which enables us to bound the difference in load between k-hop neighbors on the cycle, for any k≤n/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \le n/2$$\end{document}. We complement this with a “gap covering” argument, which bounds the maximum value of the gap by bounding its value across all possible subsets of a certain structure, and recursively bounding the gaps within each subset. We also show that our analysis can be extended to the specific instance of Harary graphs. On the other hand, we prove that the expected second moment of the gap is lower bounded by Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (n)$$\end{document}. Additionally, we provide experimental evidence that our upper bound on the gap is tight up to a logarithmic factor.
引用
收藏
页码:1007 / 1029
页数:22
相关论文
共 24 条
  • [1] Azar Y(1999)Balanced allocations SIAM J. Comput. 29 180-200
  • [2] Broder AZ(1990)Load balancing and Poisson equation in a graph Concurr. Pract. Exp. 2 289-314
  • [3] Karlin AR(2006)Randomized gossip algorithms IEEE/ACM Trans. Netw. 14 2508-2530
  • [4] Upfal E(1996)Dynamic load balancing by random matchings J. Comput. Syst. Sci. 53 357-370
  • [5] Boillat JE(1962)The maximum connectivity of a graph Proc. Natl. Acad. Sci. USA 48 1142-1104
  • [6] Boyd S(2001)The power of two choices in randomized load balancing IEEE Trans. Parallel Distrib. Syst. 12 1094-354
  • [7] Ghosh A(1998)First-and second-order diffusive methods for rapid, coarse, distributed load balancing Theory Comput. Syst. 31 331-775
  • [8] Prabhakar B(2015)Graphical balanced allocations and the (1+ Random Struct. Algorithms 47 760-304
  • [9] Shah D(2001))-choice process Comb. Optim. 9 255-133
  • [10] Ghosh B(1989)The power of two random choices: a survey of techniques and results Inf. Comput. 82 93-undefined