Partial interior regularity for sub-elliptic systems with Dini continuous coefficients in Carnot groups: the sub-quadratic controllable case

被引:0
|
作者
Dongni Liao
Jialin Wang
Qiang Yang
Shimin Wu
机构
[1] Gannan Normal University,School of Mathematics and Computer Science
[2] Gannan Normal University,School of Physics and Electronic Information Technology
来源
Boundary Value Problems | / 2017卷
关键词
nonlinear sub-elliptic system; Dini continuous coefficients; sub-quadratic controllable growth; optimal partial regularity; Carnot groups; 35H20; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
We consider nonlinear sub-elliptic systems with Dini continuous coefficients for the case 1<m<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1< m<2$\end{document} in Carnot groups and prove a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C^{1}$\end{document}-partial regularity result for weak solutions under the controllable growth conditions. Our method of proof for sub-elliptic systems is based on a generalization of the technique of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {A}$\end{document}-harmonic approximation. It is interesting to point out that our result is optimal in the sense that in the case of Hölder continuous coefficients we get directly the optimal Hölder exponent on its regular set.
引用
收藏
相关论文
共 44 条
  • [1] Partial interior regularity for sub-elliptic systems with Dini continuous coefficients in Carnot groups: the sub-quadratic controllable case
    Liao, Dongni
    Wang, Jialin
    Yang, Qiang
    Wu, Shimin
    BOUNDARY VALUE PROBLEMS, 2017,
  • [2] Optimal partial regularity for sub-elliptic systems with sub-quadratic growth in Carnot groups
    Wang, Jialin
    Liao, Dongni
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) : 2499 - 2519
  • [3] Optimal partial regularity for nonlinear sub-elliptic systems with Dini continuous coefficients in Carnot groups
    Jialin Wang
    Dongni Liao
    Boundary Value Problems, 2016
  • [4] Optimal partial regularity for nonlinear sub-elliptic systems with Dini continuous coefficients in Carnot groups
    Wang, Jialin
    Liao, Dongni
    BOUNDARY VALUE PROBLEMS, 2016, : 1 - 18
  • [5] C1-partial regularity for sub-elliptic systems with Dini continuous coefficients in Carnot groups
    Wang, Jialin
    Liao, Qiang
    Liao, Dongni
    Gao, Shujin
    Gui, Shaohui
    Yang, Qiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 169 : 242 - 264
  • [6] Holder Continuity for Sub-Elliptic Systems Under the Sub-Quadratic Controllable Growth in Carnot Groups
    Wang, Jialin
    Liao, Dongni
    Yu, Zefeng
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2013, 130 : 169 - 202
  • [7] Regularity for sub-elliptic systems with VMO-coefficients in the Heisenberg group: the sub-quadratic structure case
    Wang, Jialin
    Zhu, Maochun
    Gao, Shujin
    Liao, Dongni
    ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 420 - 449
  • [8] Optimal partial regularity for sub-elliptic systems with Dini continuous coefficients under the superquadratic natural growth
    Wang, Jialin
    Liao, Dongni
    Gao, Shujing
    Yu, Zefeng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 114 : 13 - 25
  • [9] Gradient regularity for nonlinear sub-elliptic systems with the drift term: sub-quadratic growth case
    Chen, Beibei
    Wang, Jialin
    Liao, Dongni
    AIMS MATHEMATICS, 2025, 10 (01): : 1407 - 1437
  • [10] Partial regularity for sub-elliptic systems with Dini continuous coefficients involving natural growth terms in the Heisenberg group
    Liao, Dongni
    Wang, Jialin
    Yu, Zefeng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (02) : 828 - 840