Rotation surfaces of constant Gaussian curvature and mean curvature in sub-Riemannian Heisenberg space H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb H^1$$\end{document}

被引:0
作者
Jose Martins Veloso
机构
[1] Universidade Federal do Pará,Faculdade de Matemática
关键词
Sub-Riemannian geometry; Heinsenberg space; Gaussian curvature; Mean curvature; Rotation surfaces; Surfaces of constant; Gaussian curvature; Surfaces of constant mean curvature; Primary 53C17; Secondary 53A35;
D O I
10.1007/s00022-022-00652-4
中图分类号
学科分类号
摘要
We apply the notions of Gaussian curvature and mean curvature to rotation surfaces in sub-Riemannian Heisenberg space H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb H^1$$\end{document}. In Diniz and Veloso (J Dyn Control Syst 22(4):807–820, 2016) we introduced a notion of Gaussian curvature, and here we classify rotation surfaces which are of constant Gaussian curvature. We study these surfaces rotating a horizontal curve γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} around the z-axis. They have a resemblance to rotation surfaces of constant curvature in Euclidean space R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^3$$\end{document}. The rotation surfaces of constant mean curvature in H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb H^1$$\end{document} are well known. The mean curvature of a rotation surface S in H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb H^1$$\end{document} is the curvature of the curve in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^2$$\end{document} which is the projection of γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, and we use this property to classify them.
引用
收藏
相关论文
共 13 条
  • [1] Diniz MM (2016)First Variation of the Hausdorff measure of non-horizontal submanifolds in sub-riemannian stratified lie groups J. Dyn. Control Syst. 4 119-125
  • [2] Santos MRB(1992)Constant curvature models in Sub-Riemannian geometry Matematica Contemporanea 49 1081-1144
  • [3] Veloso J(1996)Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces Commun. Pure Appl. Math. 79 111-139
  • [4] Falbel E(2008)Constant mean curvature surfaces in sub-Riemannian geometry J. Diff. Geom. 6 8-40
  • [5] Veloso J(2013)Variation of perimeter measure in sub-Riemannian geometry Int. Electron. J. Geom. 183 555-570
  • [6] Verderesi J(2004)Sub-Riemannian constant mean curvature surfaces in the Heisenberg group as limits Ann. Mat. Pura Appl. undefined undefined-undefined
  • [7] Garofalo N(undefined)undefined undefined undefined undefined-undefined
  • [8] Nhieu DM(undefined)undefined undefined undefined undefined-undefined
  • [9] Hladky R(undefined)undefined undefined undefined undefined-undefined
  • [10] Pauls S(undefined)undefined undefined undefined undefined-undefined