On Homogeneous Semilattices and Their Automorphism Groups

被引:0
作者
Manfred Droste
Dietrich Kuske
John K. Truss
机构
[1] Technische Universität Dresden,Institut für Algebra
[2] University of Leeds,Department of Pure Mathematics
来源
Order | 1999年 / 16卷
关键词
automorphism group; homogeneous structure; normal subgroup; partial order; semilattice;
D O I
暂无
中图分类号
学科分类号
摘要
We show that there are just countably many countable homogeneous semilattices and give an explicit description of them. For the countable universal homogeneous semilattice we show that its automorphism group has a largest proper nontrivial normal subgroup.
引用
收藏
页码:31 / 56
页数:25
相关论文
共 22 条
  • [1] Albert M. H.(1986)Finite axiomatizations for existentially closed posets and semilattices Order 3 169-178
  • [2] Burris S. N.(1992)Finite axiomatizations of universal domains J. Logic Comput. 2 119-131
  • [3] Droste M.(1994)Set-homogeneous graphs J. Combin. Theory, Ser. B 62 63-95
  • [4] Droste M.(1989)Automorphism groups of infinite semilinear orders (I) and (II) Proc. London Math. Soc. (3) 58 454-478
  • [5] Giraudet M.(1993)Automorphism groups of countable highly homogeneous partially ordered sets Math. Z. 214 55-66
  • [6] Macpherson D.(1954)On infinite simple permutation groups Publ. Math. Debrecen 3 221-226
  • [7] Sauer N.(1963)The lattice-ordered group of automorphisms of an ordered set Michigan Math J. 10 399-408
  • [8] Droste M.(1980)Countable ultrahomogeneous undirected graphs Trans. Amer. Math. Soc. 262 51-94
  • [9] Holland W. C.(1984)Countable homogeneous tournaments Trans. Amer. Math. Soc. 284 431-461
  • [10] Macpherson D.(1978)On homogenous graphs J. London Math. Soc. (2) 17 375-379