Positive-definite modification of a covariance matrix by minimizing the matrix ℓ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell_{\infty}$$\end{document} norm with applications to portfolio optimization

被引:0
作者
Seonghun Cho
Shota Katayama
Johan Lim
Young-Geun Choi
机构
[1] Seoul National University,Department of Statistics
[2] Keio University,Faculty of Economics
[3] Sookmyung Women’s University,Department of Statistics
关键词
High-dimensional covariance matrix; Linear shrinkage; Matrix ; norm; Minimum variance portfolio; Positive definiteness; Regularized covariance matrix estimator;
D O I
10.1007/s10182-021-00396-7
中图分类号
学科分类号
摘要
The covariance matrix, which should be estimated from the data, plays an important role in many multivariate procedures, and its positive definiteness (PDness) is essential for the validity of the procedures. Recently, many regularized estimators have been proposed and shown to be consistent in estimating the true matrix and its support under various structural assumptions on the true covariance matrix. However, they are often not PD. In this paper, we propose a simple modification to make a regularized covariance matrix be PD while preserving its support and the convergence rate. We focus on the matrix ℓ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell_{\infty }$$\end{document} norm error in covariance matrix estimation because it could allow us to bound the error in the downstream multivariate procedure relying on it. Our proposal in this paper is an extension of the fixed support positive-definite (FSPD) modification by Choi et al. (2019) from spectral and Frobenius norms to the matrix ℓ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell_{\infty }$$\end{document} norm. Like the original FSPD, we consider a convex combination between the initial estimator (the regularized covariance matrix without PDness) and a given form of the diagonal matrix minimize the ℓ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell_{\infty }$$\end{document} distance between the initial estimator and the convex combination, and find a closed-form expression for the modification. We apply the procedure to the minimum variance portfolio (MVP) optimization problem and show that the vector ℓ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell_{\infty }$$\end{document} error in the estimation of the optimal portfolio weight is bounded by the matrix ℓ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{\infty }$$\end{document} error of the plug-in covariance matrix estimator. We illustrate the MVP results with S&P 500 daily returns data from January 1978 to December 2014.
引用
收藏
页码:601 / 627
页数:26
相关论文
共 60 条
[1]  
Bickel P(2008)Covariance regularization by thresholding Ann. Stat. 36 2577-2604
[2]  
Levina E(2008)Regularized estimation of large covariance matrices Ann. Stat. 36 199-227
[3]  
Bickel P(2011)Adaptive thresholding for sparse covariance matrix estimation J. Am. Stat. Assoc. 106 672-684
[4]  
Levina E(2010)Optimal rates of convergence for covariance matrix estimation Ann. Stat. 38 2118-2144
[5]  
Cai TT(2012)Minimax estimation of large covariance matrices under Stat. Sin. 22 1319-1349
[6]  
Liu W(2012)-norm Ann. Stat. 40 2389-2420
[7]  
Cai TT(2015)Optimal rates of convergence for sparse covariance matrix estimation Rev. Financ. Stud. 12 937-974
[8]  
Zhang C-H(2019)On portfolio optimization: forecasting covariances and choosing the risk model J. Stat. Comput. Simul. 89 1278-1300
[9]  
Zhou HH(2019)High-dimensional Markowitz portfolio optimization problem: empirical comparison of covariance matrix estimators J. Multivar. Anal. 171 234-249
[10]  
Cai TT(2020)Fixed support positive-definite modification of covariance matrix estimators via linear shrinkage N. Am. J. Econ. Finance 53 101216-52