Numerical Integrators for Continuous Disordered Nonlinear Schrödinger Equation

被引:0
作者
Xiaofei Zhao
机构
[1] Wuhan University,School of Mathematics and Statistics and Computational Sciences Hubei Key Laboratory
来源
Journal of Scientific Computing | 2021年 / 89卷
关键词
Disordered nonlinear Schrödinger equation; Spatial random potential; Numerical integrators; Low-regularity; Accuracy; 35Q55; 65L20; 65L70; 65M12; 65M15; 82C44;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the numerical solution of the continuous disordered nonlinear Schrödinger equation, which contains a spatial random potential. We address the finite time accuracy order reduction issue of the usual numerical integrators on this problem, which is due to the presence of the random/rough potential. By using the recently proposed low-regularity integrator (LRI) from (33, SIAM J Numer Anal, 2019), we show how to integrate the potential term by losing two spatial derivatives. Convergence analysis is done to show that LRI has the second order accuracy in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm for potentials in H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2$$\end{document}. Numerical experiments are done to verify this theoretical result. More numerical results are presented to investigate the accuracy of LRI compared with classical methods under rougher random potentials from applications.
引用
收藏
相关论文
共 110 条
[1]  
Akrivis GD(1991)On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation Numer. Math. 59 31-53
[2]  
Dougalis VA(1958)Absence of diffusion in certain random lattices Phys. Rev. 109 1492-2633
[3]  
Karakashian OA(2013)Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations Comput. Phys. Commun. 184 2621-309
[4]  
Anderson PW(2018)Exponential integrators for stochastic Schrödinger equations driven by Itô noise J. Comput. Math. 36 276-135
[5]  
Antoine X(2013)Mathematical theory and numerical methods for Bose-Einstein condensation Kinet. Relat. Models 6 1-2511
[6]  
Bao W(2014)A uniformly accurate multiscale time integrator pseudospectral method for the Klein–Gordon equation in the nonrelativistic limit regime SIAM J. Numer. Anal. 52 2488-40
[7]  
Besse C(2002)Order estimates in time of splitting methods for the nonlinear Schrödinger equation SIAM J. Numer. Anal. 40 26-2981
[8]  
Anton R(2011)Modulation spaces, Wiener amalgam spaces, and Brownian motions Adv. Math. 228 2943-45
[9]  
Cohen D(2008)Quasi-periodic solutions of nonlinear random Schrödinger equations J. Eur. Math. Soc. 10 1-181
[10]  
Bao W(1999)A stochastic nonlinear Schrödinger equation with multiplicative noise Commun. Math. Phys. 205 161-770