Acyclic Edge Coloring of 4-Regular Graphs Without 3-Cycles

被引:0
作者
Qiaojun Shu
Yiqiao Wang
Yulai Ma
Weifan Wang
机构
[1] Hangzhou Dianzi University,School of Science
[2] Beijing University of Chinese Medicine,School of Management
[3] Zhejiang Normal University,Department of Mathematics
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2019年 / 42卷
关键词
Acyclic edge coloring; 4-Regular graph; Cycle; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
A proper edge coloring is called acyclic if no bichromatic cycles are produced. It was conjectured that every simple graph G with maximum degree Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document} is acyclically edge-(Δ+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varDelta +2)$$\end{document}-colorable. Basavaraju and Chandran (J Graph Theory 61:192–209, 2009) confirmed the conjecture for non-regular graphs G with Δ=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta =4$$\end{document}. In this paper, we extend this result by showing that every 4-regular graph G without 3-cycles is acyclically edge-6-colorable.
引用
收藏
页码:285 / 296
页数:11
相关论文
共 62 条
[1]  
Alon N(2001)Acyclic edge colorings of graphs J. Graph Theory 37 157-167
[2]  
Sudakov B(1991)Acyclic coloring of graphs Random Struct. Algorithms 2 277-288
[3]  
Zaks A(2012)Optimal acyclic edge-coloring of cubic graphs J. Graph Theory 71 353-364
[4]  
Alon N(2008)Acyclic edge coloring of subcubic graphs Discrete Math. 308 6650-6653
[5]  
McDiarmid C(2009)Acyclic edge coloring of graphs with maximum with degree 4 J. Graph Theory 61 192-209
[6]  
Reed B(2012)Acyclic edge coloring of 2-degenerate graphs J. Graph Theory 69 1-27
[7]  
Andersen LD(2011)Acyclic edge-coloring of planar graphs SIAM J. Discrete Math. 25 463-478
[8]  
Máčajová E(2010)Some results on acyclic edge coloring of plane graphs Inf. Process. Lett. 110 887-892
[9]  
Mazák J(2013)Acyclic edge-coloring using entropy compression Eur. J. Comb. 34 1019-1027
[10]  
Basavaraju M(2008)About acyclic edge colourings of planar graphs Inf. Process. Lett. 108 412-417