Weak and TV consistency in Bayesian uncertainty quantification using disintegration

被引:0
|
作者
J. Andrés Christen
José Luis Pérez-Garmendia
机构
[1] Centro de Investigación en Matemáticas (CIMAT),
来源
Boletín de la Sociedad Matemática Mexicana | 2021年 / 27卷
关键词
Inverse problems; Bayesian inference; Disintegration; Weak convergence; Total variation; Discretization consistency; 62A99; 62C10; 35R30;
D O I
暂无
中图分类号
学科分类号
摘要
Using standard techniques in Probability theory we prove a series of results relevant in the theory of Bayesian uncertainty quantification (UQ). Using the approach, found in the Bayesian literature, of defining the posterior distribution through a disintegration argument, and using weak and total variation convergence, we are able to prove the existence and numerical consistency of the posterior measure in general functional (Banach) spaces. Relaying commonly on simpler proofs and weaker assumptions, we establish these basic results useful for the theoretical foundation of most common and current UQ problems.
引用
收藏
相关论文
共 50 条
  • [21] Adjoint operators enable fast and amortized machine learning based Bayesian uncertainty quantification
    Orozco, Rafael
    Siahkoohi, Ali
    Rizzuti, Gabrio
    van Leeuwen, Tristan
    Herrmann, Felix
    MEDICAL IMAGING 2023, 2023, 12464
  • [22] Uncertainty quantification for chromatography model parameters by Bayesian inference using sequential Monte Carlo method
    Yamamoto, Yota
    Yajima, Tomoyuki
    Kawajiri, Yoshiaki
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2021, 175 : 223 - 237
  • [23] Bayeslands: A Bayesian inference approach for parameter uncertainty quantification in Badlands
    Chandra, Rohitash
    Azam, Danial
    Mueller, R. Dietmar
    Salles, Tristan
    Cripps, Sally
    COMPUTERS & GEOSCIENCES, 2019, 131 : 89 - 101
  • [24] Uncertainty quantification and propagation in surrogate-based Bayesian inference
    Reiser, Philipp
    Aguilar, Javier Enrique
    Guthke, Anneli
    Buerkner, Paul-Christian
    STATISTICS AND COMPUTING, 2025, 35 (03)
  • [25] Bayesian uncertainty quantification and propagation for prediction of milling stability lobe
    Li, Kai
    He, Songping
    Liu, Hongqi
    Mao, Xinyong
    Li, Bin
    Luo, Bo
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 138 (138)
  • [26] Bayesian model uncertainty quantification for hyperelastic soft tissue models
    Zeraatpisheh, Milad
    Bordas, Stephane P. A.
    Beex, Lars A. A.
    DATA-CENTRIC ENGINEERING, 2021, 2
  • [27] Evaluating two sparse grid surrogates and two adaptation criteria for groundwater Bayesian uncertainty quantification
    Zeng, Xiankui
    Ye, Ming
    Burkardt, John
    Wu, Jichun
    Wang, Dong
    Zhu, Xiaobin
    JOURNAL OF HYDROLOGY, 2016, 535 : 120 - 134
  • [28] Using removable sensors in structural health monitoring: A Bayesian methodology for attachment-to-attachment uncertainty quantification
    Fang, Chen
    Yang, Xin
    Gryllias, Konstantinos
    Vandepitte, Dirk
    Liu, Xuemei
    Zhang, Lihai
    Chronopoulos, Dimitrios
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 224
  • [29] An Advanced Tool Wear Forecasting Technique with Uncertainty Quantification Using Bayesian Inference and Support Vector Regression
    Rong, Zhiming
    Li, Yuxiong
    Wu, Li
    Zhang, Chong
    Li, Jialin
    SENSORS, 2024, 24 (11)
  • [30] Uncertainty quantification in structural dynamic analysis using two-level Gaussian processes and Bayesian inference
    Zhou, K.
    Tang, J.
    JOURNAL OF SOUND AND VIBRATION, 2018, 412 : 95 - 115