Weak and TV consistency in Bayesian uncertainty quantification using disintegration

被引:0
|
作者
J. Andrés Christen
José Luis Pérez-Garmendia
机构
[1] Centro de Investigación en Matemáticas (CIMAT),
来源
Boletín de la Sociedad Matemática Mexicana | 2021年 / 27卷
关键词
Inverse problems; Bayesian inference; Disintegration; Weak convergence; Total variation; Discretization consistency; 62A99; 62C10; 35R30;
D O I
暂无
中图分类号
学科分类号
摘要
Using standard techniques in Probability theory we prove a series of results relevant in the theory of Bayesian uncertainty quantification (UQ). Using the approach, found in the Bayesian literature, of defining the posterior distribution through a disintegration argument, and using weak and total variation convergence, we are able to prove the existence and numerical consistency of the posterior measure in general functional (Banach) spaces. Relaying commonly on simpler proofs and weaker assumptions, we establish these basic results useful for the theoretical foundation of most common and current UQ problems.
引用
收藏
相关论文
共 50 条
  • [1] Weak and TV consistency in Bayesian uncertainty quantification using disintegration
    Christen, J. Andres
    Perez-Garmendia, Jose Luis
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2021, 27 (01):
  • [2] BAYESIAN UNCERTAINTY QUANTIFICATION AND PROPAGATION USING ADJOINT TECHNIQUES
    Papadimitriou, Costas
    Papadimitriou, Dimitrios I.
    11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS II - IV, 2014, : 4522 - 4533
  • [3] Uncertainty quantification in Bayesian inversion
    Stuart, Andrew M.
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL IV, 2014, : 1145 - 1162
  • [4] Error Control of the Numerical Posterior with Bayes Factors in Bayesian Uncertainty Quantification
    Capistran, Marcos A.
    Christen, J. Andres
    Daza-Torres, Maria L.
    Flores-Arguedas, Hugo
    Montesinos-Lopez, J. Cricelio
    BAYESIAN ANALYSIS, 2022, 17 (02): : 381 - 403
  • [5] Bayesian optical flow with uncertainty quantification
    Sun, Jie
    Quevedo, Fernando J.
    Bolit, Erik
    INVERSE PROBLEMS, 2018, 34 (10)
  • [6] Uncertainty quantification in the mathematical modelling of a suspension strut using BAYESIAN inference
    Mallapur, Shashidhar
    Platz, Roland
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 118 : 158 - 170
  • [7] Flow field tomography with uncertainty quantification using a Bayesian physics-informed neural network
    Molnar, Joseph P.
    Grauer, Samuel J.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (06)
  • [8] A unified framework for multilevel uncertainty quantification in Bayesian inverse problems
    Nagel, Joseph B.
    Sudret, Bruno
    PROBABILISTIC ENGINEERING MECHANICS, 2016, 43 : 68 - 84
  • [9] Uncertainty quantification for polymer micromilling force models using Bayesian inference
    Shekhar, Shivang
    Ozutemiz, Kadri Bugra
    Onler, Recep
    Nahata, Sudhanshu
    Ozdoganlar, O. Burak
    48TH SME NORTH AMERICAN MANUFACTURING RESEARCH CONFERENCE, NAMRC 48, 2020, 48 : 611 - 618
  • [10] Bayesian uncertainty quantification for magnetic resonance fingerprinting
    Metzner, Selma
    Wubbeler, Gerd
    Flassbeck, Sebastian
    Gatefait, Constance
    Kolbitsch, Christoph
    Elster, Clemens
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (07)