Local null controllability of one-phase Stefan problems in 2D star-shaped domains

被引:0
作者
Reginaldo Demarque
Enrique Fernández-Cara
机构
[1] Universidade Federal Fluminense,Departamento de Ciências da Natureza
[2] Universidad de Sevilla,Departamento E.D.A.N.
来源
Journal of Evolution Equations | 2018年 / 18卷
关键词
Null controllability; Free boundary problems; Stefan problem; Heat equation; Primary 35K05; 35K20; 35R35; Secondary 80A22; 93B05; 93C20;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we are concerned with the null controllability of one-phase Stefan problems in star-shaped domains in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document}. We prove that, for fixed T>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T>0$$\end{document} and sufficient small initial data, there exist controls that drive the state to zero at time t=T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=T$$\end{document}. Our approach relies on a null controllability result for parabolic systems in non-cylindrical domains, a complete analysis of the regularity of the controlled solution near the free boundary and a fixed-point argument.
引用
收藏
页码:245 / 261
页数:16
相关论文
共 19 条
  • [1] Avalos G(2000)Boundary controllability of thermoelastic plates via the free boundary conditions SIAM Journal on Control and Optimization 38 337-383
  • [2] Lasiecka I(2002)On the controllability of parabolic systems with a nonlinear term involving the state and the gradient SIAM Journal on Control and Optimization 41 798-819
  • [3] Doubova A(1995)Approximate controllability of the semilinear heat equation Proceedings of the Royal Society of Edinburgh: Section A Mathematics 125 31-61
  • [4] Fernández-Cara E(1971)Exact controllability theorems for linear parabolic equations in one space dimension Arch. for Ration. Mechanics and Analysis 43 272-292
  • [5] González-Burgos M(2006)Global Carleman inequalities for parabolic systems and applications to controllability SIAM journal on control and optimization 45 1395-1446
  • [6] Zuazua E(2016)On the controllability of a free-boundary problem for the 1D heat equation Systems & Control Letters 87 29-35
  • [7] Fabre C(1995)Contrôle exact de léquation de la chaleur Communications in Partial Differential Equations 20 335-356
  • [8] Puel J-P(2007)Controllability and observability of partial differential equations: some results and open problems Handbook of differential equations: evolutionary equations 3 527-621
  • [9] Zuazua E(undefined)undefined undefined undefined undefined-undefined
  • [10] Fattorini HO(undefined)undefined undefined undefined undefined-undefined