Trilinear equations, Bell polynomials, and resonant solutions

被引:0
作者
Wen-Xiu Ma
机构
[1] University of South Florida,Department of Mathematics and Statistics
来源
Frontiers of Mathematics in China | 2013年 / 8卷
关键词
Trilinear differential equation; Bell polynomial; superposition principle; 35Q51; 37K40;
D O I
暂无
中图分类号
学科分类号
摘要
A class of trilinear differential operators is introduced through a technique of assigning signs to derivatives and used to create trilinear differential equations. The resulting trilinear differential operators and equations are characterized by the Bell polynomials, and the superposition principle is applied to the construction of resonant solutions of exponential waves. Two illustrative examples are made by an algorithm using weights of dependent variables.
引用
收藏
页码:1139 / 1156
页数:17
相关论文
共 55 条
[1]  
Bell E T(1934)Exponential polynomials Ann Math 35 258-277
[2]  
Bogdan M M(1980)Exact multisoliton solution of one-dimensional Landau-Lifshitz equations for an anisotropic ferromagnet JETP Lett 31 424-427
[3]  
Kovalev A S(1975)Approximate equations for long wave equations Appl Sci Res 31 377-395
[4]  
Broer L J F(2005)Prehistory of Faà di Bruno’s formula Amer Math Monthly 112 217-234
[5]  
Craik A D D(1984)A continuous, constructive solution to Hilbert’s 17th problem Invent Math 76 365-384
[6]  
Delzell C N(1996)On the combinatorics of the Hirota Proc R Soc Lond A 452 223-234
[7]  
Gilson C(1994)-operators Phys Lett A 190 65-70
[8]  
Lambert F(2005)Multilinear operators: the natural extension of Hirota’s bilinear formalism Phys AUC 15 31-37
[9]  
Nimmo J(1971)Hirota’s bilinear method and soliton solutions Phys Rev Lett 27 1192-1194
[10]  
Willox R(1974)Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons Progr Theoret Phys 52 1498-1512