Heat Kernels for Isotropic-Like Markov Generators on Ultrametric Spaces: a Survey

被引:9
作者
Bendikov A. [1 ]
机构
[1] Institut Matematyczny, Uniwersitet Wroclawski, Pl. Grunwaldzki 2/4, Wroclaw
关键词
heat kernel; hierarchical Laplacian; hierarchical lattice; isotropic Markov semigroup; the field of p-adic numbers ℚ[!sub]p[!/sub; ultrametric space; Vladimirov-Taibleson multiplier;
D O I
10.1134/S2070046618010016
中图分类号
学科分类号
摘要
Let (X, d) be a locally compact separable ultrametric space. Let D be the set of all locally constant functions having compact support. Given a measure m and a symmetric function J(x, y) we consider the linear operator LJf(x) = ∫(f(x) − f(y)) J(x, y)dm(y) defined on the set D. When J(x, y) is isotropic and satisfies certain conditions, the operator (−LJ, D) acts in L2(X,m), is essentially self-adjoint and extends as a self-adjoint Markov generator, its Markov semigroup admits a continuous heat kernel pJ (t, x, y). When J(x, y) is not isotropic but uniformly in x, y is comparable to isotropic function J(x, y) as above the operator (−LJ, D) extends in L2(X,m) as a self-adjointMarkov generator, its Markov semigroup admits a continuous heat kernel pJ(t, x, y), and the function pJ(t, x, y) is uniformly comparable in t, x, y to the function pJ(t, x, y), the heat kernel related to the operator (−LJ,D). © 2018, Pleiades Publishing, Ltd.
引用
收藏
页码:1 / 11
页数:10
相关论文
共 30 条
[1]  
Albeverio S., Karwowski W., A random walk on p-adic numbers: generator and its spectrum, Stoch. Proc. Appl, 53, pp. 1-22, (1994)
[2]  
Aronson D.G., Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc, 73, pp. 890-896, (1967)
[3]  
Barlow M.T., Bass R.F., Chen Z.-Q., Kassmann M., Non-local Dirichlet forms and symmetric jump processes, Trans. Amer.Math. Soc, 361, pp. 1863-1999, (2009)
[4]  
Bendikov A., Grigoryan A., Pittet C., On a class of Markov semigroups on discrete ultrametric spaces, Potent. Anal, 37, pp. 125-169, (2012)
[5]  
Bendikov A., Grigoryan A., Pittet C., Woess W., Isotropic Markov semigroups on ultrametric spaces, Russian Math. Surveys, 69, 4, pp. 589-680, (2014)
[6]  
Bendikov A., Grigoryan A., Hu E., Heat kernels and non-local Dirichlet forms on ultrametric spaces, (2017)
[7]  
Bendikov A., Krupski P., On the spectrum of the hierarchical Laplacian, Potent. Anal, 41, 4, pp. 1247-1266, (2014)
[8]  
Bendikov A., Saloff-Coste L., Random walks on some countable groups, Groups, Graphs and Random Walks, (2017)
[9]  
Berg C., Forst G., Potential Theory on Locally Compact Abelian Groups, (1975)
[10]  
Brofferio S., Woess W., On transience of card shuffling, Proc. Amer. Math. Soc, 129, 5, pp. 1513-1519, (2001)