Compact modeling of metal-oxide TFTs based on artificial neural network and improved particle swarm optimization

被引:0
作者
Wanling Deng
Wanqin Zhang
You Peng
Weijing Wu
Junkai Huang
Zhi Luo
机构
[1] Jinan University,Department of Electronic Engineering
[2] South China University of Technology,State Key Laboratory of Luminescent Materials and Devices
来源
Journal of Computational Electronics | 2021年 / 20卷
关键词
Particle swarm optimization (PSO); Limited memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS); Metal-oxide thin-film transistors;
D O I
暂无
中图分类号
学科分类号
摘要
The application of artificial neural network (ANN) can give a very accurate and fast model for semiconductor devices used in circuit simulations. In this paper, we have applied multi-layer perceptron (MLP) neural network based on limited memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method to model the flexible metal-oxide thin-film transistors (TFTs). An improved particle swarm optimization (PSO) is employed to find suitable initial parameters for the ANN model, which consists of a centroid opposition-based learning algorithm and a mutation strategy based on Euclidean distance to enhance the searching ability further. This hybrid modeling routine can improve the accuracy of predictions of both the I–V and small signal parameters (gd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_d$$\end{document}, gm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_m$$\end{document}, etc.) characteristics, which are in good agreement with experimental data and fully demonstrate the validity of the proposed model. Furthermore, the model is implemented into a simulator with Verilog-A. The circuit-level tests of TFT show that the ANN compact model with PSO enables accurate performance estimation of metal-oxide TFT circuits.
引用
收藏
页码:1043 / 1049
页数:6
相关论文
共 95 条
[1]  
Zhang L(2016)A low-power high-stability flexible scan driver integrated by IZO TFTs IEEE Trans. Electron. Devices 63 1779-1782
[2]  
Huang C(2011)The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays Semicond. Sci. Technol. 26 034008-186
[3]  
Li G(2017)A surface-potential-based DC model of amorphous oxide semiconductor TFTs including degeneration IEEE Electron Device Lett. 38 183-3750
[4]  
Zhou L(2014)Trapped-charge-effect-based above-threshold current expressions for amorphous silicon TFTs consistent with Pao-Sah model IEEE Trans. Electron Devices 61 3744-1845026
[5]  
Wu W(2013)Analytical surface potential-based drain current model for amorphous InGaZno thin film transistors J. Appl. Phys. 114 184502-1809
[6]  
Xu M(2018)A compact drain current model for thin-film transistor under bias stress condition IEEE Trans. Electron Devices 65 1803-80
[7]  
Wang L(2016)InGaZnO TFT behavioral model for IC design Analog Integr. Circuits Signal Process. 87 73-57
[8]  
Ning H(2010)CNT-MOSFET modeling based on artificial neural network: application to simulation of nanoscale circuits Solid-State Electron. 54 52-366
[9]  
Yao R(1989)Multilayer feedforward networks are universal approximators Neural Netw. 2 359-36
[10]  
Peng J(2015)a-GIZO TFT neural modeling, circuit simulation and validation Solid State Electron. 105 30-528