Ramanujan's master theorem for hermitian symmetric spaces

被引:0
作者
Ding H. [1 ]
机构
[1] Department of Mathematics and Computer Science, St. Louis University, St. Louis, MO
基金
美国国家科学基金会;
关键词
Half spaces; Harish-chandra's c-function; Inversion formula; Jordan algebras; Siegel domain of type II; Spherical functions; Spherical series; Spherical transform; Symmetric cones;
D O I
10.1023/A:1009763004562
中图分类号
学科分类号
摘要
In this paper we generalize Ramanujan's Master Theorem to the context of a Siegel domain of Type II, which is the Hermitian symmetric space of a real non-compact semisimple Lie group of finite center. That is, the spherical transform of a spherical series can be expressed in terms of the coefficients of this series. © 1997 Kluwer Academic Publishers.
引用
收藏
页码:35 / 52
页数:17
相关论文
共 16 条
[1]  
Bertram W., Généralisation d'une formule de Ramanujan dans le cadre de la transformation de Fourier sphérique associée à la complexification d'un espace symétrique compact, C.R. Acad. Sci. Paris, 316, pp. 1161-1166, (1993)
[2]  
Ding H., Weighted Laplace Transforms and Bessel Functions on Hermitian Symmetric Spaces, (1994)
[3]  
Ding H., Gross K., Operator-valued Bessel functions on Jordan algebras, J. Reine. Angew. Math., 435, pp. 157-196, (1993)
[4]  
Ding H., Gross K., Richards D., Ramanujan's Master Theorem for symmetric cones, Pacific J. Math
[5]  
Faraut J., Koranyi A., Analysis on Symmetric Cones, (1994)
[6]  
Faraut J., Koranyi A., Function spaces and reproducing kernels on bounded symmetric domains, J. Func. Anal., 88, pp. 64-89, (1990)
[7]  
Gindikin S.G., Karpelevich F.I., Plancherel measure of Riemannian symmetric spaces of non-constant curvature, Dokl. Akad. Nauk SSSR, 145, pp. 252-255, (1962)
[8]  
Hardy G.H., Ramanujan
[9]  
Twelve Lectures on Subjects Suggested by His Life and Work, 3rd Ed., (1978)
[10]  
Hardy G.H., On two theorems of F. Carlson and S. Wigert, Acta Math., 42, pp. 327-339, (1920)