If all prime closed geodesics on (Sn, F) with an irreversible Finsler metric F are irrationally elliptic, there exist either exactly 2 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left[ {\frac{{n + 1}}{2}} \right]$$\end{document} or infinitely many distinct closed geodesics. As an application, we show the existence of three distinct closed geodesics on bumpy Finsler (S3, F) if any prime closed geodesic has non-zero Morse index.