Quantified propositional calculus and a second-order theory for NC1

被引:0
作者
Stephen Cook
Tsuyoshi Morioka
机构
[1] University of Toronto,Department of Computer Science
[2]  ,Hitachi Systems Development Laboratory
来源
Archive for Mathematical Logic | 2005年 / 44卷
关键词
Bounded Arithmetic; Computational Complexity; Proof Complexity;
D O I
暂无
中图分类号
学科分类号
摘要
Let H be a proof system for quantified propositional calculus (QPC). We define the Σqj-witnessing problem for H to be: given a prenex Σqj-formula A, an H-proof of A, and a truth assignment to the free variables in A, find a witness for the outermost existential quantifiers in A. We point out that the Σq1-witnessing problems for the systems G*1and G1 are complete for polynomial time and PLS (polynomial local search), respectively.
引用
收藏
页码:711 / 749
页数:38
相关论文
共 15 条
[1]  
Arai undefined(2000)undefined Ann. Pure Appl. Logic 103 155-undefined
[2]  
Barrington undefined(1990)undefined J. Comput. Syst. Sci. 41 274-undefined
[3]  
Buss undefined(1991)undefined Ann. Pure Appl. Logic 52 3-undefined
[4]  
Buss undefined(1996)undefined Arch. Math. Logic 35 33-undefined
[5]  
Buss undefined(3)undefined The Proceedings of the London Mathematical Society 60 1-undefined
[6]  
Chiari undefined(1998)undefined The J. Symbolic Logic 63 1095-undefined
[7]  
Clote undefined(1990)undefined A. Cook. Ann. Math. Art. Intell. 6 57-undefined
[8]  
Cook undefined(2003)undefined Ann. Pure Appl. Logic 124 193-undefined
[9]  
Cook undefined(1)undefined J. Symbolic Logic 44 36-undefined
[10]  
Johnson undefined(1988)undefined Comput. Syst. Sci. 37 79-undefined