On the convexity of the weakly compact Chebyshev sets in Banach spaces

被引:0
作者
Vassilis Kanellopoulos
机构
[1] University of Athens Panepistimiopolis,Department of Mathematics
来源
Israel Journal of Mathematics | 2000年 / 117卷
关键词
Hilbert Space; Banach Space; Normed Linear Space; Smooth Banach Space; Smooth Point;
D O I
暂无
中图分类号
学科分类号
摘要
A sufficient condition for a Banach spaceX is given so that every weakly compact Chebyshev subset ofX is convex. For this purpose a class broader than that of smooth Banach spaces is defined. In this way a former result of A. Brøndsted and A. L. Brown is partially extended in every finite dimensional normed linear space and a known result in Hilbert spaces is proved in a different way.
引用
收藏
页码:61 / 69
页数:8
相关论文
共 12 条
[1]  
Asplund E.(1969)Chebyshev sets in Hilbert space Transactions of the American Mathematical Society 144 235-240
[2]  
Brøndsted A.(1965)Convex sets and Chebyshev sets I Mathematica Scandinavica 17 5-16
[3]  
Brøndsted A.(1966)Convex sets and Chebyshev sets II Mathematica Scandinavica 18 5-15
[4]  
Brown A. L.(1980)Chebyshev sets and facial systems of convex sets in finite dimensional spaces Proceedings of the London Mathematical Society 41 297-339
[5]  
Busemann H.(1947)Note on a theorem on convex sets Matem. Tidsskr B 32-34
[6]  
Efimov N. V.(1961)Approximative compactness and Chebyshev sets Soviet Mathematics Doklady 2 1226-1228
[7]  
Stechkin S. B.(1940)Two theorems on convex point sets (Danish) Matem. Tidsskr B 66-70
[8]  
Jessen B.(1961)Convexity of Chebyshev sets Mathematische Annalen 142 292-304
[9]  
Klee V.(1935)Sur quelques propriétés caractéristiques des ensembles bornés non convexes Rend. Reale Acad. Lincei, Classe Sci. Fis., Mat. Nat. 21 773-779
[10]  
Motzkin T. S.(1961)Chebyshev sets in Banach spaces Soviet Mathematics Doklady 2 1373-1374