Module and Hochschild cohomology of certain semigroup algebras

被引:0
作者
A. Shirinkalam
A. Pourabbas
M. Amini
机构
[1] Amirkabir University of Technology,Faculty of Mathematics and Computer Science
[2] Amirkabir University of Technology,Faculty of Mathematics and Computer Science
[3] Tarbiat Modares University School of Mathematics,Department of Mathematics
[4] Institute for Research in Fundamental Sciences (IPM),undefined
来源
Functional Analysis and Its Applications | 2015年 / 49卷
关键词
module cohomology group; Hochschild cohomology group; inverse semigroup; semigroup algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We study the relation between the module and Hochschild cohomology groups of Banach algebras.We show that, for every commutative Banach A-A-bimodule X and every k ∈ N, the seminormed spaces HAk (A,X*) and Hk(A /J,X*) are isomorphic, where J is a specific closed ideal of A. As an example, we show that, for an inverse semigroup S with the set of idempotents E, where ℓ1(E) acts on ℓ1(S) by multiplication on the right and trivially on the left, the first module cohomology \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{{\ell ^1}\left( E \right)}^1$$\end{document} (ℓ1(S), ℓ1(GS)(2n+1)) is trivial for each n ∈ N, where GS is the maximal group homomorphic image of S. Also, the second module cohomology \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{{\ell ^1}\left( E \right)}^2$$\end{document} (ℓ1(S), ℓ1(GS)(2n+1)) is a Banach space.
引用
收藏
页码:315 / 318
页数:3
相关论文
共 15 条
[1]  
Amini M.(2010)undefined Semigroup Forum 80 302-312
[2]  
Bodaghi A.(2011)undefined Dissertationes Math. 481 1-121
[3]  
Ebrahimi Bagha D.(2010)undefined Semigroup Forum 81 269-276
[4]  
Dales H. G.(2011)undefined Bull. Iranian Math. Soc. 37 157-168
[5]  
Lau A. T.-M.(2004)undefined Proc. Amer. Math. Soc. 132 1403-1410
[6]  
Strauss D.(2008)undefined Semigroup Forum 77 300-305
[7]  
Nasrabadi E.(undefined)undefined undefined undefined undefined-undefined
[8]  
Pourabbas A.(undefined)undefined undefined undefined undefined-undefined
[9]  
Nasrabadi E.(undefined)undefined undefined undefined undefined-undefined
[10]  
Pourabbas A.(undefined)undefined undefined undefined undefined-undefined