Testing Periodicity

被引:0
作者
Oded Lachish
Ilan Newman
机构
[1] University of Warwick,Department of Computer Science
[2] University of Haifa,Department of Computer Science
来源
Algorithmica | 2011年 / 60卷
关键词
Property testing; Periodicity;
D O I
暂无
中图分类号
学科分类号
摘要
We study the string-property of being periodic and having periodicity smaller than a given bound. Let Σ be a fixed alphabet and let p,n be integers such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\leq \frac{n}{2}$\end{document} . A length-n string over Σ, α=(α1,…,αn), has the property Period(p) if for every i,j∈{1,…,n}, αi=αj whenever i≡j (mod p). For an integer parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g\leq \frac{n}{2},$\end{document} the property Period(≤g) is the property of all strings that are in Period(p) for some p≤g. The property \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathit{Period}(\leq \frac{n}{2})$\end{document} is also called Periodicity.
引用
收藏
页码:401 / 420
页数:19
相关论文
共 13 条
  • [1] Alon N.(1992)Simple construction of almost Random Struct. Algorithms 3 289-304
  • [2] Goldreich O.(1998)-wise independent random variables J. ACM 45 653-750
  • [3] Håstad J.(1896)Property testing and its connection to learning and approximation Bull. Soc. Math. France 24 199-220
  • [4] Peralta R.(1993)Sur la distribution des zéros de la fonction ζ( SIAM J. Comput. 22 838-856
  • [5] Goldwasser S.(1980)) et ses conséquences arithmétiques Am. Math. Mon. 87 693-696
  • [6] Goldreich O.(1996)Small-bias probability spaces: efficient construction and applications SIAM J. Comput. 25 252-271
  • [7] Ron D.(undefined)Simple analytic proof of the prime number theorem undefined undefined undefined-undefined
  • [8] Hadamard J.(undefined)Robust characterization of polynomials with applications to program testing undefined undefined undefined-undefined
  • [9] Naor J.(undefined)undefined undefined undefined undefined-undefined
  • [10] Naor M.(undefined)undefined undefined undefined undefined-undefined