Spatial Relative Risk of Upper Aerodigestive Tract Cancers Incidence in French Northern Region

被引:0
作者
Dabo-Niang S. [1 ]
Darwich E. [2 ]
Hamdad L. [3 ]
Thiam B. [4 ]
机构
[1] Université de Lille, CNRS, UMR 8524-Laboratoire Paul Painlevé, INRIA-MODAL, Lille
[2] Université de Lille, IUT, Lille
[3] Ecole nationale Supérieure en Informatique (ESI), Laboratoire LCSI, BP 68M, Oued El Smar, El Harrach
[4] Université de Lille, CNRS, UMR 8524-Laboratoire Paul Painlevé, Lille
基金
澳大利亚研究理事会;
关键词
Cancer; Kernel spatial estimate; Relative risk function; UADT;
D O I
10.1007/s42979-022-01426-0
中图分类号
学科分类号
摘要
In this work, kernel spatial relative risk function estimation is of interest. We consider the case where covariates that may affect the spatial patterns of disease are contaminated by measurement errors. Finite sample properties were carried out in order to illustrate our methodology with real cancer data. We perform relative risk functions estimation on upper aerodigestive tract cancer (UADT) data to investigate locations of high and low incidence concentration in NPDC (Nord-Pas-de-Calais) French region. © 2022, The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.
引用
收藏
相关论文
共 29 条
[11]  
Prates M.O., Kulldorff M., Assuncao R.M., Relative risk estimates from spatial and space-time scan statistics: are they biased?, Stat Med, 33, 15, pp. 2634-2644, (2014)
[12]  
Mathialagan P.M.C., Computer Vision Techniques for Upper Aero-Digestive Tract Tumor Grading Classification-Addressing Pathological Challenges, (2021)
[13]  
Shankargouda Patil K.H.A., Et al., Machine learning and its potential applications to the genomic study of head and neck cancer-a systematic review, pp. 533-549, (2019)
[14]  
Hastie T., Tibshirani R., Generalized additive models: some applications, J Am Stat Assoc, 82, 398, pp. 371-386, (1987)
[15]  
Poljak Z., Dewey C.E., Rosendal T., Friendship R.M., Young B., Berke O., Spread of porcine circovirus associated disease (pcvad) in ontario (canada) swine herds: Part i. exploratory spatial analysis, BMC Vet Res, 6, 1, (2010)
[16]  
Prentice R., Covariate measurement errors and parameter estimation in a failure time regression model, Biometrika, 69, 2, pp. 331-342, (1982)
[17]  
Carroll R.J., Hall P., Optimal rates of convergence for deconvolving a density, J Am Stat Assoc, 83, 404, pp. 1184-1186, (1988)
[18]  
Fan J., Asymptotic normality for deconvolution kernel density estimators, Sankhyā Ser A, 53, 1, pp. 97-110, (1991)
[19]  
Truong Y.K., Survival time regression involving covariate measurement error, Bull Inform Cybernet, 27, 1, pp. 31-51, (1995)
[20]  
Delaigle A., Gijbels I., Estimation of integrated squared density derivatives from a contaminated sample, J R Stat Soc Ser B Stat Methodol, 64, 4, pp. 869-886, (2002)