The impulsive solution for a semi-linear singularly perturbed differential-difference equation

被引:0
作者
Ai-feng Wang
Mei Xu
Ming-kang Ni
机构
[1] Huaiyin Normal University,School of Mathematical Science
[2] East China Normal University,Department of Mathematics
来源
Acta Mathematicae Applicatae Sinica, English Series | 2016年 / 32卷
关键词
singularly perturbed; differential-difference equation; delay argument; asymptotic expansion; impulsive solution; boundary function; 34C10; 34B15;
D O I
暂无
中图分类号
学科分类号
摘要
The impulsive solution for a semi-linear singularly perturbed differential-difference equation is studied. Using the methods of boundary function and fractional steps, we construct the formula asymptotic expansion of the problem. At the same time, Based on sewing techniques, the existence of the smooth impulsive solution and the uniform validity of the asymptotic expansion are proved.
引用
收藏
页码:333 / 342
页数:9
相关论文
共 26 条
[1]  
Kadalbajoo M.K.(2008)Anumerical method based on finite difference for boundary value problems for singularly perturbed delay differential equations Appl. Math. Comput. 197 692-707
[2]  
Sharma K.K.(2004)Numerical analysis of singularly perturbed delay differential equations with layer behavior Appl. Math. Comput. 157 11-28
[3]  
Kadalbajoo M.K.(2008)Fitted mesh B-spline collocation method for singularly perturbed differential-difference equations with small delay Appl. Math. Comput. 204 90-98
[4]  
Sharma K.K.(2004)Parameter uniform numercial method for a boundary-value problem for singular perturted nonlinear delay differential equation of neutral type Int. J. Comput. Math. 81 845-862
[5]  
Kadalbajoo M.K.(2005)Numerical treatment for nonlinear differential difference equations with negative shift Nonlinear Analysis: Theor. Meth. Appl. 63 1909-1924
[6]  
Devendra Ku.m.a.r.(1994)Singular perturbation analysis of boundary-value problems for differential difference equations V. Small shift with layer behavior SIAM J. Appl. Math. 54 249-272
[7]  
Kadalbajoo M.K.(1991)Singular perturbation analysis of boundary-value problems for differential difference equations. IV. A nonlinear example with layer behavior Studies Appl. Math. 84 231-273
[8]  
Sharma K.K.(2010)The asymptotic solutions of delay singularly perturbed differential difference equations Acta Math. Sci. 30A 1413-1423
[9]  
Kadalbajoo M.K.(2006)Uniformly convergent non-standard finite difference methods for singularly perturbed differential-difference equations with delay or advance Int. J. Numer. Methods Engry 66 272-296
[10]  
Sharma K.K.(2011)Numerical analysis of singularly perturbed delay differential turning point problem Appl. Math. Comput. 218 3483-3498