共 83 条
[1]
Liu W(2020)Mix geographical information into local collaborative ranking for poi recommendation World Wide Web 23 131-152
[2]
Lai H(2008)A lambic: A privacy-preserving recommender system for electronic commerce Int J Inf Secur 7 307-334
[3]
Wang J(2017)A privacy-preserving framework for trust-oriented point-of-interest recommendation IEEE Access 6 393-404
[4]
Ke G(2017)Applet: A privacy-preserving framework for location-aware recommender system Sci China Inform Sci 60 092101-25
[5]
Yang W(2017)Privacy-preserving collaborative recommendations based on random perturbations Expert Syst Appl 71 18-569
[6]
Yin J(2015)A survey: Deriving private information from perturbed data Artif Intell Rev 44 547-1782
[7]
Aïmeur E(2018)Privacy enhanced matrix factorization for recommendation with local differential privacy IEEE Trans Knowl Data Eng 30 1770-826
[8]
Brassard G(2011)What can we learn privately? SIAM J Comput 40 793-2166
[9]
Fernandez JM(2018)Lopub: High-dimensional crowdsourced data publication with local differential privacy IEEE Trans Inform Forens Secur 13 2151-69
[10]
Onana FSM(1965)Randomized response: A survey technique for eliminating evasive answer bias J Am Stat Assoc 60 63-183