Reliability analysis of the augmented cubes in terms of the h-extra r-component edge-connectivity

被引:0
作者
Yushen Zhang
Mingzu Zhang
Weihua Yang
机构
[1] Xinjiang University,Department of College of Mathematics and System Sciences
[2] Taiyuan University of Technology,Department of mathematics
来源
The Journal of Supercomputing | 2024年 / 80卷
关键词
Interconnection network; Reliability and fault tolerance; -Extra ; -component edge-connectivity; Augmented cube;
D O I
暂无
中图分类号
学科分类号
摘要
In order to meet ever-increasing demands for reliable parallel and distributed systems, it is crucial to evaluate the reliability and fault tolerance of their underlying interconnection networks. Such an interconnection network is usually modeled as a connected graph G, where the vertex set and edge set represent the processors and links between processors in the network, respectively. In this paper, we combine Fàbrega’s idea about h-extra edge-connectivity and Sampathkumar’s concept about r-component edge-connectivity to introduce a more refined parameter for characterizing fault tolerance of interconnection networks, named as h-extra r-component edge-connectivity. Given a connected graph G, for two integers h≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\ge 1$$\end{document} and r≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 2$$\end{document}, the h-extra r-component edge-connectivity of G, denoted as cλrh(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\lambda _{r}^{h}(G)$$\end{document}, is the minimum cardinality among all edge subsets F⊂E(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\subset E(G)$$\end{document}, if any, such that G-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-F$$\end{document} has at least r components, and each component has at least h vertices. As an enhancement on hypercube, the n-dimensional augmented cube AQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {AQ}_n$$\end{document}, introduced by Choudum and Sunitha in 2002, reserves several excellent topological properties. As |V(AQn)|=2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V(\text {AQ}_n)|=2^n$$\end{document}, the h-extra three-component edge-connectivity of AQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {AQ}_n$$\end{document} is well-defined for each integer h with 1≤h≤⌊2n/3⌋\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le h\le \lfloor 2^n/3 \rfloor$$\end{document}. In this paper, a generalization of Xu et al.’s conclusion is obtained that finds an upper bound for the exact value of general h-extra three-component edge-connectivity of AQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {AQ}_n$$\end{document} and shows that it is sharp for 1≤h≤2n2-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le h\le 2^{\left\lfloor \frac{n}{2} \right\rfloor -1 }$$\end{document} and h=2c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h=2^c$$\end{document} where 1≤c≤n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le c\le n-2$$\end{document}. Let h=∑i=0s2ti\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h=\sum _{i=0}^{s} 2^{t_{i}}$$\end{document} be a positive integer with t0>t1>⋯>ts≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_0> t_1> \cdots > t_s\ge 0$$\end{document}. Let δ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta =0$$\end{document} if h is even and δ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta =1$$\end{document} if h is odd. Specifically, cλ3h(AQn)=(4n-4)h-2∑i=0s(2ti-1)2ti-2∑i=0s4i·2ti-δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\lambda _3^h(\text {AQ}_n)=(4n-4)h-2\sum _{i=0}^{s}(2 t_{i}-1) 2^{t_{i}}-2\sum _{i=0}^{s} 4i \cdot 2^{t_{i}}-\delta$$\end{document} for n≥4,h≤2n2-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 4, h\le 2^{\left\lfloor \frac{n}{2} \right\rfloor -1 }$$\end{document}, and cλ32c(AQn)=(2n-2c-1)2c+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\lambda _3^{2^c}(\text {AQ}_n)=(2n-2c-1)2^{c+1}$$\end{document} for n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 4$$\end{document} and 1≤c≤n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le c\le n-2$$\end{document}.
引用
收藏
页码:11704 / 11718
页数:14
相关论文
共 77 条
[1]  
Bhuyan L(1984)Generalized hypercubes and hyperbus structure for a computer network IEEE Trans Comput 33 323-333
[2]  
Agrawal D(2014)Maximum induced subgraph of an augmented cube Int J Comput Inf Eng 8 736-739
[3]  
Chien MJ(1984)Generalized connectivity in graphs Bull Bombay Math Colloq 2 1-6
[4]  
Chen JC(2019)The Theor Comput Sci 766 38-45
[5]  
Tsai CH(2002)-component connectivity of alternating group networks Networks 40 302-310
[6]  
Chartrand G(2014)Augmented cubes IEEE T Comput 63 1594-1600
[7]  
Kapoor S(1996)On Discrete Math 155 49-57
[8]  
Lesniak L(2018)-extra connectivity and Theor Comput Sci 707 96-101
[9]  
Lick D(2018)-extra edge connectivity of folded hypercubes Appl Math Comput 334 401-406
[10]  
Chang JM(2021)On the extra connectivity of graphs Int J Found Comput S 32 137-149