A new type of zipper fractal interpolation surfaces and associated bivariate zipper fractal operator

被引:0
|
作者
Sneha Garg
Kuldip Katiyar
机构
[1] Chandigarh University,Department of Mathematics
关键词
Bivariate fractal interpolation functions (BFIF); Zipper; Fractal interpolation surface (FIS); Signature; Scaling factor; Bivariate zipper fractal operator (BZFO); 28A80; 26A18; 41A05; 41A29;
D O I
暂无
中图分类号
学科分类号
摘要
This note aims to introduce a bivariate fractal interpolation method by using the concept of zipper. In this note, we establish a general method to construct the zipper fractal interpolation surfaces (ZFIS) on the rectangular region. Further, the bivariate zipper fractal interpolation function (BZFIF) is used to acquire a parameterized family of (ε,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varepsilon ,\alpha )$$\end{document}- bivariate zipper fractal function ((ε,α)-BZFF)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({(}\varepsilon {,}\alpha ){\text{-BZFF)}}$$\end{document} with respect to the prescribed zipper bivariate continuous function on the rectangular region. The bivariate zipper fractal operator (BZFO) defined in this note is bounded and linear. Several elementary aspects of this associated BZFO are reported. Further, we discuss the extension of BZFO to the Lp(J×I,B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p} (J \times I,{\rm B})$$\end{document} spaces for 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le p < \infty$$\end{document}, where B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm B}$$\end{document} is the real field ℝ or the complex field ℂ in this note.
引用
收藏
页码:3021 / 3043
页数:22
相关论文
共 50 条