A new type of zipper fractal interpolation surfaces and associated bivariate zipper fractal operator

被引:0
|
作者
Sneha Garg
Kuldip Katiyar
机构
[1] Chandigarh University,Department of Mathematics
关键词
Bivariate fractal interpolation functions (BFIF); Zipper; Fractal interpolation surface (FIS); Signature; Scaling factor; Bivariate zipper fractal operator (BZFO); 28A80; 26A18; 41A05; 41A29;
D O I
暂无
中图分类号
学科分类号
摘要
This note aims to introduce a bivariate fractal interpolation method by using the concept of zipper. In this note, we establish a general method to construct the zipper fractal interpolation surfaces (ZFIS) on the rectangular region. Further, the bivariate zipper fractal interpolation function (BZFIF) is used to acquire a parameterized family of (ε,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varepsilon ,\alpha )$$\end{document}- bivariate zipper fractal function ((ε,α)-BZFF)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({(}\varepsilon {,}\alpha ){\text{-BZFF)}}$$\end{document} with respect to the prescribed zipper bivariate continuous function on the rectangular region. The bivariate zipper fractal operator (BZFO) defined in this note is bounded and linear. Several elementary aspects of this associated BZFO are reported. Further, we discuss the extension of BZFO to the Lp(J×I,B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p} (J \times I,{\rm B})$$\end{document} spaces for 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le p < \infty$$\end{document}, where B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm B}$$\end{document} is the real field ℝ or the complex field ℂ in this note.
引用
收藏
页码:3021 / 3043
页数:22
相关论文
共 50 条
  • [31] Pointwise regularity of parameterized affine zipper fractal curves
    Barany, Balazs
    Kiss, Gergely
    Kolossvary, Istvan
    NONLINEARITY, 2018, 31 (04) : 1705 - 1733
  • [32] Generalized zipper fractal approximation and parameter identification problems
    N. Vijay
    A. K. B. Vijender
    Computational and Applied Mathematics, 2022, 41
  • [33] Generalized zipper fractal approximation and parameter identification problems
    Vijay
    Vijender, N.
    Chand, A.K.B.
    Computational and Applied Mathematics, 2022, 41 (04)
  • [34] Fractal interpolation surfaces derived from Fractal interpolation functions
    Bouboulis, P.
    Dalla, L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) : 919 - 936
  • [35] Bivariate fractal interpolation functions on grids
    Dalla, L
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2002, 10 (01) : 53 - 58
  • [36] Parameter Identification of Bivariate Fractal Interpolation Surfaces by Using Convex Hulls
    Drakopoulos, Vasileios
    Matthes, Dimitrios
    Sgourdos, Dimitrios
    Vijender, Nallapu
    MATHEMATICS, 2023, 11 (13)
  • [37] Construction of fractal surfaces by recurrent fractal interpolation curves
    Yun, Chol-hui
    O, Hyong-chol
    Choi, Hui-chol
    CHAOS SOLITONS & FRACTALS, 2014, 66 : 136 - 143
  • [38] On Non-Tensor Product Bivariate Fractal Interpolation Surfaces on Rectangular Grids
    Drakopoulos, Vasileios
    Manousopoulos, Polychronis
    MATHEMATICS, 2020, 8 (04)
  • [39] Closed fractal interpolation surfaces
    Bouboulis, P.
    Dalla, L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (01) : 116 - 126
  • [40] Nonlinear bivariate fractal interpolation function on grids
    Ri, SongIl
    CHAOS SOLITONS & FRACTALS, 2015, 81 : 351 - 358