A new type of zipper fractal interpolation surfaces and associated bivariate zipper fractal operator

被引:0
|
作者
Sneha Garg
Kuldip Katiyar
机构
[1] Chandigarh University,Department of Mathematics
关键词
Bivariate fractal interpolation functions (BFIF); Zipper; Fractal interpolation surface (FIS); Signature; Scaling factor; Bivariate zipper fractal operator (BZFO); 28A80; 26A18; 41A05; 41A29;
D O I
暂无
中图分类号
学科分类号
摘要
This note aims to introduce a bivariate fractal interpolation method by using the concept of zipper. In this note, we establish a general method to construct the zipper fractal interpolation surfaces (ZFIS) on the rectangular region. Further, the bivariate zipper fractal interpolation function (BZFIF) is used to acquire a parameterized family of (ε,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varepsilon ,\alpha )$$\end{document}- bivariate zipper fractal function ((ε,α)-BZFF)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({(}\varepsilon {,}\alpha ){\text{-BZFF)}}$$\end{document} with respect to the prescribed zipper bivariate continuous function on the rectangular region. The bivariate zipper fractal operator (BZFO) defined in this note is bounded and linear. Several elementary aspects of this associated BZFO are reported. Further, we discuss the extension of BZFO to the Lp(J×I,B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p} (J \times I,{\rm B})$$\end{document} spaces for 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le p < \infty$$\end{document}, where B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm B}$$\end{document} is the real field ℝ or the complex field ℂ in this note.
引用
收藏
页码:3021 / 3043
页数:22
相关论文
共 50 条
  • [21] A study of COVID-19 spread through zipper fractal interpolation
    Sneha
    Katiyar, Kuldip
    INTERNATIONAL JOURNAL OF APPLIED NONLINEAR SCIENCE, 2023, 4 (01) : 1 - 11
  • [22] A NEW NONLINEAR BIVARIATE FRACTAL INTERPOLATION FUNCTION
    Ri, Song-Il
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (04)
  • [23] MULTIVARIATE FRACTAL INTERPOLATION FUNCTIONS: SOME APPROXIMATION ASPECTS AND AN ASSOCIATED FRACTAL INTERPOLATION OPERATOR
    Pandey K.K.
    Viswanathan P.V.
    Electronic Transactions on Numerical Analysis, 2022, 55 : 627 - 651
  • [24] Image compression using recurrent bivariate fractal interpolation surfaces
    Bouboulis, P.
    Dalla, Leoni
    Drakopoulos, V.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (07): : 2063 - 2071
  • [25] Shape preserving aspects of a novel class of bi-cubic partially blended rational zipper fractal interpolation surfaces
    Vijay
    Chand, A. K. B.
    JOURNAL OF ANALYSIS, 2024, 32 (06): : 3475 - 3505
  • [26] C1-Positivity preserving Bi-quintic blended rational quartic zipper fractal interpolation surfaces
    Vijay
    Chand, A. K. B.
    CHAOS SOLITONS & FRACTALS, 2024, 188
  • [27] New types of fractal interpolation surfaces
    Ri S.
    Chaos, Solitons and Fractals, 2019, 123 : 52 - 58
  • [28] New types of fractal interpolation surfaces
    Ri, Songil
    CHAOS SOLITONS & FRACTALS, 2019, 119 : 291 - 297
  • [29] Generalized zipper fractal approximation and parameter identification problems
    Vijay
    Vijender, N.
    Chand, A. K. B.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04):
  • [30] Positivity-Preserving Rational Cubic Fractal Interpolation Function Together with Its Zipper Form
    Sharma, Shamli
    Katiyar, Kuldip
    Sudhamsu, Gadug
    Wratch, Manjinder Kaur
    Salgotra, Rohit
    AXIOMS, 2024, 13 (09)