A new type of zipper fractal interpolation surfaces and associated bivariate zipper fractal operator

被引:0
|
作者
Sneha Garg
Kuldip Katiyar
机构
[1] Chandigarh University,Department of Mathematics
关键词
Bivariate fractal interpolation functions (BFIF); Zipper; Fractal interpolation surface (FIS); Signature; Scaling factor; Bivariate zipper fractal operator (BZFO); 28A80; 26A18; 41A05; 41A29;
D O I
暂无
中图分类号
学科分类号
摘要
This note aims to introduce a bivariate fractal interpolation method by using the concept of zipper. In this note, we establish a general method to construct the zipper fractal interpolation surfaces (ZFIS) on the rectangular region. Further, the bivariate zipper fractal interpolation function (BZFIF) is used to acquire a parameterized family of (ε,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varepsilon ,\alpha )$$\end{document}- bivariate zipper fractal function ((ε,α)-BZFF)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({(}\varepsilon {,}\alpha ){\text{-BZFF)}}$$\end{document} with respect to the prescribed zipper bivariate continuous function on the rectangular region. The bivariate zipper fractal operator (BZFO) defined in this note is bounded and linear. Several elementary aspects of this associated BZFO are reported. Further, we discuss the extension of BZFO to the Lp(J×I,B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p} (J \times I,{\rm B})$$\end{document} spaces for 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le p < \infty$$\end{document}, where B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm B}$$\end{document} is the real field ℝ or the complex field ℂ in this note.
引用
收藏
页码:3021 / 3043
页数:22
相关论文
共 50 条
  • [1] A new type of zipper fractal interpolation surfaces and associated bivariate zipper fractal operator
    Garg, Sneha
    Katiyar, Kuldip
    JOURNAL OF ANALYSIS, 2023, 31 (04): : 3021 - 3043
  • [2] Countable zipper fractal interpolation and some elementary aspects of the associated nonlinear zipper fractal operator
    Pandey, K. K.
    Viswanathan, P.
    AEQUATIONES MATHEMATICAE, 2021, 95 (01) : 175 - 200
  • [3] Countable zipper fractal interpolation and some elementary aspects of the associated nonlinear zipper fractal operator
    K. K. Pandey
    P. Viswanathan
    Aequationes mathematicae, 2021, 95 : 175 - 200
  • [4] Non-stationary zipper α-fractal functions and associated fractal operator
    Jha, Sangita
    Verma, Saurabh
    Chand, Arya K. B.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (04) : 1527 - 1552
  • [5] Affine zipper fractal interpolation functions
    Chand, A. K. B.
    Vijender, N.
    Viswanathan, P.
    Tetenov, A., V
    BIT NUMERICAL MATHEMATICS, 2020, 60 (02) : 319 - 344
  • [6] Zipper rational fractal interpolation functions
    Pasupathi, R.
    Vijay
    Chand, A. K. B.
    Upadhye, N. S.
    JOURNAL OF ANALYSIS, 2024, 32 (06): : 3197 - 3226
  • [7] Affine zipper fractal interpolation functions
    A. K. B. Chand
    N. Vijender
    P. Viswanathan
    A. V. Tetenov
    BIT Numerical Mathematics, 2020, 60 : 319 - 344
  • [8] Contractive Multivariate Zipper Fractal Interpolation Functions
    Miculescu, Radu
    Pasupathi, R.
    RESULTS IN MATHEMATICS, 2024, 79 (04)
  • [9] A Fractal Operator Associated with Bivariate Fractal Interpolation Functions on Rectangular Grids
    S. Verma
    P. Viswanathan
    Results in Mathematics, 2020, 75
  • [10] On bivariate fractal interpolation for countable data and associated nonlinear fractal operator
    Pandey, Kshitij Kumar
    Secelean, Nicolae Adrian
    Viswanathan, Puthan Veedu
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)