Positive solutions for the Neumann p-Laplacian

被引:0
作者
Diego Averna
Nikolaos S. Papageorgiou
Elisabetta Tornatore
机构
[1] Università degli studi di Palermo,Dipartimento di Matematica e Informatica
[2] National Technical University,Department of Mathematics
来源
Monatshefte für Mathematik | 2018年 / 185卷
关键词
Positive solutions; Nonlinear regularity; Nonlinear maximum principle; Nonlinear Picone’s identity; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
We examine parametric nonlinear Neumann problems driven by the p-Laplacian with asymptotically (p-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p-1$$\end{document})-linear reaction term f(z, x) (as x→+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\rightarrow +\infty $$\end{document}). We determine the existence, nonexistence and minimality of positive solutions as the parameter λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} varies.
引用
收藏
页码:557 / 573
页数:16
相关论文
共 47 条
[1]  
Aizicovici S(2008)Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints Memoirs Am. Math. Soc. 188 679-719
[2]  
Papageorgiou NS(2009)Existence of multiple solutions with precise sign information for superlinear Neumann problems Ann. Mat. Pura Appl. 32 819-830
[3]  
Staicu V(1998)A Picone’s identity for the p-Laplacian and applications Nonlinear Anal. 49 1213-1222
[4]  
Aizicovici S(2012)Existence of three solutions for a mixed boundary value problem with the Sturm–Liouville equation Bull. Korean Math. Soc. 61 102-107
[5]  
Papageorgiou NS(2016)Existence and asymptotic properties for quasilinear elliptic equations with gradient dependence Appl. Math. Lett. 298 245-260
[6]  
Staicu V(2004)Three solutions for a mixed boundary value problem involving the one-dimensional J. Math. Anal. Appl. 57 1-8
[7]  
Allegretto W(2014)-Laplacian Electron. J. Qual. Theory Differ. Equ. 28 20-31
[8]  
Huang YX(2016)Infinitely many weak solutions for a mixed boundary value system with ( Nonlinear Anal. Real World Appl. 2013 1-12
[9]  
Averna D(2013))-Laplacian Electron. J. Differ. Equ. 13 1075-1086
[10]  
Giovannelli N(2014)Ordinary ( Commun. Pure Appl. Anal. 75 2992-3007