Comparison Between Reduced Basis and Stochastic Collocation Methods for Elliptic Problems

被引:0
作者
Peng Chen
Alfio Quarteroni
Gianluigi Rozza
机构
[1] Ecole Polytechnique Fédérale de Lausanne,Modelling and Scientific Computing, CMCS, Mathematics Institute of Computational Science and Engineering, MATHICSE
[2] EPFL,Modellistica e Calcolo Scientifico, MOX, Dipartimento di Matematica F. Brioschi
[3] Politecnico di Milano,SISSA MathLab
[4] International School for Advanced Studies,undefined
来源
Journal of Scientific Computing | 2014年 / 59卷
关键词
Stochastic elliptic problem; Reduced basis method; Stochastic collocation method; Sparse grid; Greedy algorithm ; Offline–online computational decomposition; Convergence analysis;
D O I
暂无
中图分类号
学科分类号
摘要
The stochastic collocation method (Babuška et al. in SIAM J Numer Anal 45(3):1005–1034, 2007; Nobile et al. in SIAM J Numer Anal 46(5):2411–2442, 2008a; SIAM J Numer Anal 46(5):2309–2345, 2008b; Xiu and Hesthaven in SIAM J Sci Comput 27(3):1118–1139, 2005) has recently been applied to stochastic problems that can be transformed into parametric systems. Meanwhile, the reduced basis method (Maday et al. in Comptes Rendus Mathematique 335(3):289–294, 2002; Patera and Rozza in Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations Version 1.0. Copyright MIT, http://augustine.mit.edu, 2007; Rozza et al. in Arch Comput Methods Eng 15(3):229–275, 2008), primarily developed for solving parametric systems, has been recently used to deal with stochastic problems (Boyaval et al. in Comput Methods Appl Mech Eng 198(41–44):3187–3206, 2009; Arch Comput Methods Eng 17:435–454, 2010). In this work, we aim at comparing the performance of the two methods when applied to the solution of linear stochastic elliptic problems. Two important comparison criteria are considered: (1), convergence results of the approximation error; (2), computational costs for both offline construction and online evaluation. Numerical experiments are performed for problems from low dimensions O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1)$$\end{document} to moderate dimensions O(10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(10)$$\end{document} and to high dimensions O(100)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(100)$$\end{document}. The main result stemming from our comparison is that the reduced basis method converges better in theory and faster in practice than the stochastic collocation method for smooth problems, and is more suitable for large scale and high dimensional stochastic problems when considering computational costs.
引用
收藏
页码:187 / 216
页数:29
相关论文
共 83 条
  • [1] Babuška I(2007)A stochastic collocation method for elliptic partial differential equations with random input data SIAM J. Numer. Anal. 45 1005-1034
  • [2] Nobile F(2004)An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations Comptes Rendus Mathematique, Analyse Numérique 339 667-672
  • [3] Tempone R(2011)Convergence rates for greedy algorithms in reduced basis methods SIAM J. Math. Anal. 43 1457-1472
  • [4] Barrault M(2010)Reduced basis techniques for stochastic problems Arch. Comput. Methods Eng. 17 435-454
  • [5] Maday Y(2009)A reduced basis approach for variational problems with stochastic parameters: application to heat conduction with variable Robin coefficient Comput. Methods Appl. Mech. Eng. 198 3187-3206
  • [6] Nguyen NC(2004)Sparse grids Acta Numerica 13 147-269
  • [7] Patera AT(2010)Certified reduced basis methods and output bounds for the harmonic Maxwell’s equations SIAM J. Sci. Comput. 32 970-996
  • [8] Binev P(2010)Convergence rates of best N-term Galerkin approximations for a class of elliptic SPDEs Found. Comput. Math. 10 615-646
  • [9] Cohen A(2008)The multi-element probabilistic collocation method (ME-PCM): error analysis and applications J. Comput. Phys. 227 9572-9595
  • [10] Dahmen W(2007)Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations ESAIM Math. Model. Numer. Anal. 41 575-605