Thermal sensor selection for the thermal error modeling of machine tool based on the fuzzy clustering method

被引:4
作者
Haitong Wang
Liping Wang
Tiemin Li
Jian Han
机构
[1] Tsinghua University,Institute of Manufacturing Engineering, Department of Precision Instruments and Mechanology
来源
The International Journal of Advanced Manufacturing Technology | 2013年 / 69卷
关键词
Fuzzy C means cluster; ISODATA cluster; Thermal error;
D O I
暂无
中图分类号
学科分类号
摘要
Thermal sensor selection is a work of great importance when modeling thermal error. The proper selection of thermal sensors and their locations may greatly improve the prediction accuracy. In this article, the fuzzy C means (FCM) clustering method and the ISODATA method are used to group the data of thermal sensors and a genetic algorithm–back propagation artificial neural network thermal model is established to testify the accuracy. A validity criterion for the FCM method is put forward to guarantee the precision of the model. Both the FCM and the ISODATA methods are effective for thermal sensor selection.
引用
收藏
页码:121 / 126
页数:5
相关论文
共 51 条
[31]  
Wang HT(undefined)undefined undefined undefined undefined-undefined
[32]  
Yang JG(undefined)undefined undefined undefined undefined-undefined
[33]  
Ren YQ(undefined)undefined undefined undefined undefined-undefined
[34]  
Liu GL(undefined)undefined undefined undefined undefined-undefined
[35]  
Zhao HT(undefined)undefined undefined undefined undefined-undefined
[36]  
Dou XL(undefined)undefined undefined undefined undefined-undefined
[37]  
Chen WZ(undefined)undefined undefined undefined undefined-undefined
[38]  
He SW(undefined)undefined undefined undefined undefined-undefined
[39]  
Wang KC(undefined)undefined undefined undefined undefined-undefined
[40]  
Tseng PC(undefined)undefined undefined undefined undefined-undefined