Validity, dialetheism and self-reference

被引:0
作者
Federico Matias Pailos
机构
[1] Consejo Nacional de Investigaciones Cientificas y Tecnicas - University of Buenos Aires,
来源
Synthese | 2020年 / 197卷
关键词
Validity; Self-reference; Paradoxes; Paraconsistency; Self-Reference;
D O I
暂无
中图分类号
学科分类号
摘要
It has been argued recently (Beall in Spandrels of truth, Oxford University Press, Oxford, 2009; Beall and Murzi J Philos 110:143–165, 2013) that dialetheist theories are unable to express the concept of naive validity. In this paper, we will show that LP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {LP}$$\end{document} can be non-trivially expanded with a naive validity predicate. The resulting theory, LPVal\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {LP}^{\mathbf {Val}}$$\end{document} reaches this goal by adopting a weak self-referential procedure. We show that LPVal\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {LP}^{\mathbf {Val}}$$\end{document} is sound and complete with respect to the three-sided sequent calculus SLPVal\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {SLP}^{\mathbf {Val}}$$\end{document}. Moreover, LPVal\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {LP}^{\mathbf {Val}}$$\end{document} can be safely expanded with a transparent truth predicate. We will also present an alternative theory LPVal∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {LP}^{\mathbf {Val}^{*}}$$\end{document}, which includes a non-deterministic validity predicate.
引用
收藏
页码:773 / 792
页数:19
相关论文
共 15 条
  • [1] Avron A(2007)Non-deterministic semantics for logics with a consistency operator Journal of Approximate Reasoning 45 271-287
  • [2] Beall J(2011)Multiple-conclusion lp and default classicality The Review of Symbolic Logic 4 326-336
  • [3] Beall J(2013)Two flavors of curry paradox Journal of Philosophy 110 143-165
  • [4] Murzi J(2014)An alternative approach for quasi-truth Logic Journal of IGPL 22 387-410
  • [5] Coniglio ME(1996)On dialethism Australasian Journal of Philosophy 74 153-161
  • [6] Da Cruz LH(2014)Fixed points for consequence relations Logique et Analyse 57 333-357
  • [7] Goodship L(2005)Proof analysis in modal logic Journal of Philosophical Logic 34 507-544
  • [8] Meadows T(2017)Validity in a dialetheist framework Logique et Analyse 70 191-202
  • [9] Negri S(1979)The Logic of Paradox Journal of Philosophical Logic 8 219-241
  • [10] Pailos F(2012)Conservatively extending classical logic with transparent truth Review of Symbolic Logic 5 354-378