An essay on self-dual generalized quadrangles

被引:0
作者
S. E. Payne
J. A. Thas
机构
[1] University of Colorado Denver,Department of Mathematics and Statistical Sciences
[2] Ghent University,Department of Mathematics and Computer Algebra
来源
Designs, Codes and Cryptography | 2012年 / 64卷
关键词
Generalized quadrangle; Duality; 51E24; 51E12; 05B25; 05B20; 05E30;
D O I
暂无
中图分类号
学科分类号
摘要
We collect some known facts about a self-dual generalized quadrangle (GQ) and consider especially the number of absolute points of a duality. The only known finite self-dual GQs are the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_2(\mathcal O)}$$\end{document} constructed by J. Tits where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal O}$$\end{document} is a translation oval in a finite desarguesian projective plane of even order. We review a construction of these GQs in enough detail to study the sets of absolute points of certain dualities, but for more details about these GQs see the monograph Finite Generalized Quadrangles (Europ. Math. Soc., Zurich 2009). After some generalities about the incidence matrix of a finite (GQ) we return to the study of self-dual examples.
引用
收藏
页码:93 / 103
页数:10
相关论文
共 5 条
[1]  
Haemers W.(2005)Conditions for singular incidence matrices J. Algebraic Combin. 21 179-183
[2]  
Payne S.E.(1968)Symmetric representations of nondegenerate generalized Proc. Am. Math. Soc. 19 1321-1326
[3]  
Payne S.E.(1970)-gons J. Algebra 16 473-485
[4]  
Payne S.E.(1975)Affine representations of generalized quadrangles Simon Stevin 49 3-32
[5]  
Thas J.A.(undefined)Generalized quadrangles with symmetry, Part I undefined undefined undefined-undefined