Spontaneous breakdown of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{P}\mathcal{T} $$\end{document} symmetry in the complex Coulomb potential

被引:0
|
作者
G. Lévai
机构
[1] Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI),
关键词
Spontaneous breakdown of ; symmetry; Coulomb potential; complex energy eigenvalues; 03.65.Ge; 03.65.Nk; 11.30.Er;
D O I
10.1007/s12043-009-0125-5
中图分类号
学科分类号
摘要
The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{P}\mathcal{T} $$\end{document} symmetry of the Coulomb potential and its solutions are studied along trajectories satisfying the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{P}\mathcal{T} $$\end{document} symmetry requirement. It is shown that with appropriate normalization constant the general solutions can be chosen \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{P}\mathcal{T} $$\end{document} -symmetric if the L parameter that corresponds to angular momentum in the Hermitian case is real. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{P}\mathcal{T} $$\end{document} symmetry is spontaneously broken, however, for complex L values of the form L = −1/2 + iλ. In this case the potential remains \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{P}\mathcal{T} $$\end{document} -symmetric, while the two independent solutions are transformed to each other by the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{P}\mathcal{T} $$\end{document} operation and at the same time, the two series of discrete energy eigenvalues turn into each other’s complex conjugate.
引用
收藏
页码:329 / 335
页数:6
相关论文
共 50 条