Normalized Solutions for Nonautonomous Schrödinger Equations on a Suitable Manifold

被引:0
作者
Sitong Chen
Xianhua Tang
机构
[1] Central South University,School of Mathematics and Statistics
来源
The Journal of Geometric Analysis | 2020年 / 30卷
关键词
Schrödinger equation; Normalized solution; Geometrical structure; 35B35; 35J60; 58J05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the existence of normalized ground state solutions for the following Schrödinger equation -Δu-a(x)f(u)=λu,x∈RN;u∈H1(RN),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u-a(x)f(u)=\lambda u, &{} x\in {\mathbb {R}}^N; \\ u\in H^1({\mathbb {R}}^N), \end{array} \right. \end{aligned}$$\end{document}and give a better representation of its geometrical structure, where N≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 1$$\end{document}, λ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in {\mathbb {R}}$$\end{document}, a∈C(RN,[0,∞))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in {\mathcal {C}}({\mathbb {R}}^N, [0, \infty ))$$\end{document} with 0<a∞:=lim|y|→∞a(y)≤a(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<a_{\infty }:=\lim _{|y|\rightarrow \infty }a(y)\le a(x)$$\end{document} and f∈C(R,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in {\mathcal {C}}({\mathbb {R}},{\mathbb {R}})$$\end{document} satisfies general assumptions. In particular, we propose a new approach to recover the compactness for a minimizing sequence on a suitable manifold, and overcome the essential difficulties due to the nonconstant potential a.
引用
收藏
页码:1637 / 1660
页数:23
相关论文
共 37 条
  • [1] Bahrouni A(2015)Infinitely many solutions for a class of sublinear Schrödinger equations with indefinite potentials Proc. R. Soc. Edinburgh Sect. A 145 445-465
  • [2] Ounaies H(2011)Scaling properties of functionals and existence of constrained minimizers J. Funct. Anal. 261 2486-2507
  • [3] Rădulescu VD(1983)Nonlinear scalar field equations, I. Existence of a ground state Arch. Ration. Mech. Anal. 82 313-345
  • [4] Bellazzini J(2018)Improved results for Klein–Gordon–Maxwell systems with general nonlinearity Discret. Contin. Dyn. Syst. A 38 2333-2348
  • [5] Siciliano G(2020)Berestycki-Lions conditions on ground state solutions for a nonlinear Schrödinger equation with variable potentials Adv. Nonlinear Anal. 9 496-515
  • [6] Berestycki H(2019)Ground state solutions of Schröinger–Poisson systems with variable potential and convolution nonlinearity J. Math. Anal. Appl. 73 87-111
  • [7] Lions PL(2018)Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity Adv. Nonlinear Anal. 9 148-167
  • [8] Chen ST(2019)Existence and concentration of semiclassical ground state solutions for the generalized Chern–Simons–Schrödinger system in Nonlinear Anal. 185 68-96
  • [9] Tang XH(1957)Geometrical representation of the Schrödinger equation for solving maser problems J. Appl. Phys. 28 49-52
  • [10] Chen ST(2018)A note on the nonlinear Schrödinger equation in a general domain Nonlinear Anal. 173 99-122