Scalarization of Multiobjective Robust Optimization Problems

被引:0
作者
Khoshkhabar-amiranloo S. [1 ]
机构
[1] School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran
关键词
Optimality conditions; Polar cone; Robust multiobjective optimization; Scalarization functions; Set optimization;
D O I
10.1007/s43069-021-00082-z
中图分类号
学科分类号
摘要
In this paper, we introduce several robustness concepts for uncertain multiobjective optimization problems and using polar cone and some scalarization functions we characterize these concepts. We provide some equivalent characterizations for various robust solutions to uncertain multiobjective optimization problems based on a set approach. © 2021, The Author(s), under exclusive licence to Springer Nature Switzerland AG.
引用
收藏
相关论文
共 30 条
[1]  
Goberna M.A., Lopez M.A., Post-Optimal Analysis in Linear Semi-Infinite Optimization, (2014)
[2]  
Ben-Tal A., El G., Nemirovski A., Robust Optimization, (2009)
[3]  
Bertsimas D., Brown D.B., Caramanis C., Theory and applications of robust optimization, SIAM Rev, 53, 3, pp. 464-501, (2011)
[4]  
Shi S., Zheng Q., Zhuang D., Set-valued robust mappings and approximatable mappings, J Math Anal Appl, 183, pp. 706-726, (1994)
[5]  
Hoffmann A., Geletu A., On robustness of set-valued maps and marginal value functions, Discuss Math Differ Incl Control Optim, 25, pp. 59-108, (2005)
[6]  
Klamroth K., Kobis E., Schobel A., Tammer C., A unified approach for different concepts of robustness and stochastic programming via nonlinear scalarizing functionals, Optimization, 62, pp. 649-671, (2013)
[7]  
Ehrgott M., Ide J., Schobel A., Minmax robustness for multiobjective optimization problems, Eur J Oper Res, 239, 1, pp. 17-31, (2014)
[8]  
Ide J., Kobis E., Concepts of efficiency for uncertain multiobjective optimization problems based on set order relations, Math Meth Oper Res, 80, 1, pp. 99-127, (2014)
[9]  
Kuroiwa D., Some Duality Theorems of Set-Valued Optimization with Natural Criteria, pp. 221-228, (1999)
[10]  
Ide J., Kobis E., Kuroiwa D., Schobel A., Tammer C., The relationship between multiobjective robustness concepts and set-valued optimization, Fix Point Theory A, 83, (2014)