Primal-Dual Strategy for State-Constrained Optimal Control Problems

被引:0
作者
Maítine Bergounioux
Karl Kunisch
机构
[1] UMR-CNRS 6628,Institut für Mathematik
[2] Université d'Orléans,undefined
[3] U.F.R. Sciences,undefined
[4] Universität Graz,undefined
来源
Computational Optimization and Applications | 2002年 / 22卷
关键词
optimal control; state constraints; augmented Lagrangians; primal-dual method; active sets;
D O I
暂无
中图分类号
学科分类号
摘要
State constrained optimal control problems represent severe analytical and numerical challenges. A numerical algorithm based on an active set strategy involving primal as well as dual variables, suggested by a generalized Moreau-Yosida regularization of the state constraint is proposed and analyzed. Numerical examples are included.
引用
收藏
页码:193 / 224
页数:31
相关论文
共 24 条
[1]  
Bergounioux M.(1999)Primal-dual strategy for optimal control problems SIAM Journal on Control and Optimization 37 1176-1194
[2]  
Ito K.(1997)Augmented Lagrangian techniques for elliptic state constrained optimal control problems SIAM Journal on Control and Optimization 35 1524-1543
[3]  
Kunisch K.(1982)Projected Newton methods for optimization problems with simple constraints SIAM Journal on Control and Optimization 20 221-246
[4]  
Bergounioux M.(1986)Control of an elliptic problem with pointwise state constraints SIAM Journal on Control and Optimization 24 1309-1322
[5]  
Kunisch K.(1999)Modifying a sparse Cholesky factorisation SIAM Journal on Matrix Analysis and Applications 20 606-627
[6]  
Bertsekas D.(2001)Multiple-rank modifications of a sparse Cholesky factorization SIAM Journal on Matrix Analysis and Applications 22 997-1013
[7]  
Casas E.(1993)The dual active set algorithm application to quadratic network optimization Computationial Optimization and Applications 1 349-373
[8]  
Davis T.A.(1984)Dual approximations in optimal control SIAM Journal on Control and Optimization 22 423-466
[9]  
Hager W.(2000)Augmented Lagrangian formulation of nonsmooth convex optimization in Hilbert spaces Nonlinear Analysis 41 572-589
[10]  
Davis T.A.(1990)Approximate quasi-Newton methods Mathematical Programming 48 41-70